Skip to main content
Log in

Abstract

We show a general stability result in the framework of strong solutions of the Navier–Stokes–Fourier system describing the motion of a compressible viscous and heat conducting gas. As a corollary, we develop a concept of statistical solution in the class of regular solutions “beyond the blow up time”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

References

  1. Abgrall, R., Mishra, S.: Uncertainty quantification for hyperbolic systems of conservation laws. In: Handbook of Numerical Methods for Hyperbolic Problems. Handb. Numer. Anal., vol. 18, pp. 507–544. Elsevier/North-Holland, Amsterdam (2017)

    Chapter  Google Scholar 

  2. Albritton, D., Brué, E., Colombo, M.: Non-uniqueness of Leray solutions of the forced Navier–Stokes equations. Ann. Math. (2) 196(1), 415–455 (2022)

    Article  MathSciNet  Google Scholar 

  3. Bae, H.-O., Zajaczkowski, W.M.: Global regular motions for compressible barotropic viscous fluids: stability. Math. Methods Appl. Sci. 41(15), 5869–5905 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bella, P., Feireisl, E., Jin, B.J., Novotný, A.: Robustness of strong solutions to the compressible Navier–Stokes system. Math. Ann. 362, 281–303 (2015)

    Article  MathSciNet  Google Scholar 

  5. Buckmaster, T., Cao-Labora, G., Gómez-Serrano, J.: Smooth imploding solutions for 3D compressible fluids. Preprint arXiv:2208.09445

  6. Buckmaster, T., Vicol, V.: Convex integration and phenomenologies in turbulence. EMS Surv. Math. Sci. 6(1), 173–263 (2019)

    Article  MathSciNet  Google Scholar 

  7. Březina, J., Feireisl, E., Novotný, A.: Stability of strong solutions to the Navier–Stokes–Fourier system. SIAM J. Math. Anal. 52(2), 1761–1785 (2020)

    Article  MathSciNet  Google Scholar 

  8. Cho, Y., Kim, H.: Existence results for viscous polytropic fluids with vacuum. J. Differ. Equ. 228(2), 377–411 (2006)

    Article  MathSciNet  Google Scholar 

  9. Constantin, P., Wu, J.: Statistical solutions of the Navier–Stokes equations on the phase space of vorticity and the inviscid limits. J. Math. Phys. 38(6), 3031–3045 (1997)

    Article  MathSciNet  Google Scholar 

  10. Fanelli, F., Feireisl, E.: Statistical solutions to the barotropic Navier–Stokes system. J. Stat. Phys. 181(1), 212–245 (2020)

    Article  MathSciNet  Google Scholar 

  11. Feireisl, E., Novotný, A.: Mathematics of Open Fluid Systems. Birkhäuser-Verlag, Basel (2022)

    Book  Google Scholar 

  12. Feireisl, E., Novotný, A., Sun, Y.: A regularity criterion for the weak solutions to the Navier–Stokes–Fourier system. Arch. Ration. Mech. Anal. 212(1), 219–239 (2014)

    Article  MathSciNet  Google Scholar 

  13. Feireisl, E., Wen, H., Zhu, C.: On Nash’s conjecture for models of viscous, compressible, and heat conducting fluids. IM ASCR Prague, preprint No. IM 2022 6 (2022)

  14. Foias, C.: Statistical study of Navier–Stokes equations. I. Rend. Sem. Mat. Univ. Padova 48, 219–348 (1973)

    MathSciNet  Google Scholar 

  15. Foias, C.: Statistical study of Navier–Stokes equations. II. Rend. Sem. Mat. Univ. Padova 49(1973), 9–123 (1972)

    MathSciNet  Google Scholar 

  16. Foias, C., Rosa, R.M.S., Temam, R.: Properties of time-dependent statistical solutions of the three-dimensional Navier–Stokes equations. Ann. Inst. Fourier (Grenoble) 63(6), 2515–2573 (2013)

    Article  MathSciNet  Google Scholar 

  17. Foias, C., Rosa, R.M.S., Temam, R.M.: Properties of stationary statistical solutions of the three-dimensional Navier–Stokes equations. J. Dyn. Differ. Equ. 31(3), 1689–1741 (2019)

    Article  MathSciNet  Google Scholar 

  18. Fjordholm, U.S., Lye, K., Mishra, S., Weber, F.: Statistical solutions of hyperbolic systems of conservation laws: numerical approximation. Math. Models Methods Appl. Sci. 3(30), 539–609 (2020)

    Article  MathSciNet  Google Scholar 

  19. Jakubowski, A.: The almost sure Skorokhod representation for subsequences in nonmetric spaces. Teor. Veroyatnost. i Primenen. 42(1), 209–216 (1997)

    Article  MathSciNet  Google Scholar 

  20. Kawashima, S., Shizuta, Y.: On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws. Tohoku Math. J. (2) 40(3), 449–464 (1988)

    Article  MathSciNet  Google Scholar 

  21. Ledoux, M., Talagrand, M.: Probability in Banach spaces, volume 23 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, (1991). Isoperimetry and processes

  22. Le Maître, O.P., Knio, O.M.: Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics. Springer, New York (2010)

    Book  Google Scholar 

  23. Merle, F., Raphaël, P., Rodnianski, I., Szeftel, J.: On the implosion of a compressible fluid I: smooth self-similar inviscid profiles. Ann. Math. (2) 196(2), 567–778 (2022)

    Article  MathSciNet  Google Scholar 

  24. Merle, F., Raphaël, P., Rodnianski, I., Szeftel, J.: On the implosion of a compressible fluid II: singularity formation. Ann. Math. 196(2), 779–889 (2022)

    Article  MathSciNet  Google Scholar 

  25. Mishra, S., Schwab, Ch.: Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data. Math. Comp. 280(81), 1979–2018 (2012)

    Article  MathSciNet  Google Scholar 

  26. Nordström, J., Iaccarino, G., Pettersson, M.P.: Polynomial Chaos Methods of Hyperbolic Partial Differential Equations. Springer-Verlag GmbH, Switzerland (2015)

    Google Scholar 

  27. Serre, D.: Local existence for viscous system of conservation laws: \(H^s\)-data with \(s>1+d/2\). In: Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena. Contemp. Math. Amer. Math. Soc., vol 526, pp 339–358. Providence, RI (2010)

  28. Valli, A.: A correction to the paper: An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. (4) 130, 197–213 (1982); MR 83h:35112]. Ann. Mat. Pura Appl. (4), 132:399–400 (1982)

  29. Valli, A.: An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. 4(130), 197–213 (1982)

    Article  MathSciNet  Google Scholar 

  30. Valli, A., Zajaczkowski, M.: Navier–Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103, 259–296 (1986)

    Article  MathSciNet  Google Scholar 

  31. Vishik, M.J., Fursikov, A.V.: Mathematical problems of statistical hydromechanics. Mathematics and its Applications (Soviet Series), vol 9. Kluwer Academic Publishers Group, Dordrecht (1988). Translated from the 1980 Russian original

  32. Xiu, D.: Fast numerical methods for stochastic computations: a review. Commun. Comput. Phys. 2–4(5), 242–272 (2009)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of E.F. was partially supported by the Czech Sciences Foundation (GAČR), Grant Agreement 21–02411 S. The Institute of Mathematics of the Academy of Sciences of the Czech Republic is supported by RVO:67985840. M.L. has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project no. 233630050 - TRR 146. She is grateful to the Gutenberg Research College and Mainz Institute of Multiscale Modelling for supporting her research

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Feireisl.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feireisl, E., Lukáčová-Medvid’ová, M. Statistical solutions for the Navier–Stokes–Fourier system. Stoch PDE: Anal Comp 12, 1021–1045 (2024). https://doi.org/10.1007/s40072-023-00298-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-023-00298-6

Keywords

Navigation