Skip to main content
Log in

A regularity theory for stochastic generalized Burgers’ equation driven by a multiplicative space-time white noise

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

We introduce the uniqueness, existence, \(L_p\)-regularity, and maximal Hölder regularity of the solution to semilinear stochastic partial differential equation driven by a multiplicative space-time white noise:

$$\begin{aligned} u_t = au_{xx} + bu_{x} + cu + {{\bar{b}}}|u|^\lambda u_{x} + \sigma (u)\dot{W},\quad (t,x)\in (0,\infty )\times {\mathbb {R}}; \quad u(0,\cdot ) = u_0, \end{aligned}$$

where \(\lambda > 0\). The function \(\sigma (u)\) is either bounded Lipschitz or super-linear in u. The noise \(\dot{W}\) is a space-time white noise. The coefficients abc depend on \((\omega ,t,x)\), and \({{\bar{b}}}\) depends on \((\omega ,t)\). The coefficients \(a,b,c,{\bar{b}}\) are uniformly bounded, and a satisfies ellipticity condition. The random initial data \(u_0 = u_0(\omega ,x)\) is nonnegative. To establish the \(L_p\)-regularity theory, we impose an algebraic condition on \(\lambda \) depending on the nonlinearity of the diffusion coefficient \(\sigma (u)\). For example, if \(\sigma (u)\) has Lipschitz continuity, linear growth, and boundedness in u, \(\lambda \) is assumed to be less than or equal to 1; \(\lambda \in (0,1]\). However, if \(\sigma (u) = |u|^{1+\lambda _0}\) with \(\lambda _0\in [0,1/2)\), \(\lambda \) is taken to be less than 1; \(\lambda \in (0,1)\). Under those conditions, the uniqueness, existence, and regularity of the solution are obtained in stochastic \(L_p\) spaces. Also, we have the maximal Hölder regularity by employing the Hölder embedding theorem. For example, if \(\lambda \in (0,1]\) and \(\sigma (u)\) has Lipschitz continuity, linear growth, and boundedness in u, for \(T<\infty \) and \(\varepsilon >0\),

$$\begin{aligned} u \in C^{1/4 - \varepsilon ,1/2 - \varepsilon }_{t,x}([0,T]\times {\mathbb {R}})\quad (a.s.). \end{aligned}$$

On the other hand, if \(\lambda \in (0,1)\) and \(\sigma (u) = |u|^{1+\lambda _0}\) with \(\lambda _0\in [0,1/2)\), for \(T<\infty \) and \(\varepsilon >0\),

$$\begin{aligned} u \in C^{\frac{1/2-(\lambda -1/2) \vee \lambda _0}{2} - \varepsilon ,1/2-(\lambda -1/2) \vee \lambda _0 - \varepsilon }_{t,x}([0,T]\times {\mathbb {R}})\quad (a.s.). \end{aligned}$$

It should be noted that if \(\sigma (u)\) is bounded Lipschitz in u, the Hölder regularity of the solution is independent of \(\lambda \). However, if \(\sigma (u)\) is super-linear in u, the Hölder regularities of the solution are affected by nonlinearities, \(\lambda \) and \(\lambda _0.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Bertini, L., Cancrini, N., Jona-Lasinio, G.: The stochastic Burgers‘ equation. Commun. Math. Phys. 165(2), 211–232 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Da Prato, G., Debussche, A., Temam, R.: Stochastic Burgers‘ equation. Nonlinear Differ. Equ. Appl. 1(4), 389–402 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Da Prato, G., Gatarek, D.: Stochastic Burgers’ equation with correlated noise. Stochs. Int. J. Prob. Stoch. Process. 52(1–2), 29–41 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Gyöngy, I.: Existence and uniqueness results for semilinear stochastic partial differential equations. Stoch. Process. Appl. 73(2), 271–299 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gyöngy, I., Rovira, C.: On stochastic partial differential equations with polynomial nonlinearities. Stochs. Int. J. Prob. Stoch. Process. 67(1–2), 123–146 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Gyöngy, I., Rovira, C.: On \(L_p\)-solutions of semilinear stochastic partial differential equations. Stoch. Process. Appl. 90(1), 83–108 (2000)

    Article  MATH  Google Scholar 

  7. León, J.A., Nualart, D., Pettersson, R.: The stochastic Burgers‘ equation: finite moments and smoothness of the density. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3(03), 363–385 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Englezos, N., Frangos, N.E., Kartala, X.I., Yannacopoulos, A.N.: Stochastic Burgers’ pdes with random coefficients and a generalization of the Cole-Hopf transformation. Stoch. Process. Appl. 123(8), 3239–3272 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Catuogno, P., Olivera, C.: Strong solution of the stochastic Burgers equation. Appl. Anal. 93(3), 646–652 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lewis, P., Nualart, D.: Stochastic Burgers’ equation on the real line: regularity and moment estimates. Stochastics 90(7), 1053–1086 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Röckner, M., Sobol, Z.: Kolmogorov equations in infinite dimensions: well-posedness and regularity of solutions, with applications to stochastic generalized Burgers equations. Ann. Probab. 34(2), 663–727 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crighton, D.G., Dowling, A.P., Ffowcs-Williams, J., Heckl, M., Leppington, F., Bartram, J.F.: Modern methods in analytical acoustics lecture notes (1992)

  13. Ladyzhenskaia, O.A. Solonnikov, V.A., Ural’tseva, N.N.: Linear and quasi-linear equations of parabolic type, Vol. 23, American Mathematical Soc., (1968)

  14. Dix, D.B.: Nonuniqueness and uniqueness in the initial-value problem for Burgers’ equation. SIAM J. Math. Anal. 27(3), 708–724 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bekiranov, D.: The initial-value problem for the generalized Burgers’ equation. Differ. Integral Equ. 9(6), 1253–1265 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Tersenov, A.S.: On the generalized Burgers equation. Nonlinear Differ. Equ. Appl. 17(4), 437–452 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gomez, A., Lee, K., Mueller, C., Wei, A., Xiong, J.: Strong uniqueness for an spde via backward doubly stochastic differential equations. Stat. Probab. Lett. 83(10), 2186–2190 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Krylov, N.V.: An analytic approach to spdes. Stoch. Partial Differ. Equ Six Perspect. 64, 185–242 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Krylov, N.V.: On a result of C. Mueller and E. Perkins, Probab. Theory Relat. Fields 108 (4) (1997) 543–557

  20. Krylov, N.V.: On SPDE‘s and superdiffusions, Ann. Probab. (1997) 1789–1809

  21. Mueller, C.: Long time existence for the heat equation with a noise term. Probab. Theory Relat. Fields 90(4), 505–517 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Burdzy, K., Mueller, C., Perkins, E.: Nonuniqueness for nonnegative solutions of parabolic stochastic partial differential equations. Illinois J. Math. 54(4), 1481–1507 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mytnik, L.: Weak uniqueness for the heat equation with noise, Ann. Probab. (1998) 968–984

  24. Mytnik, L., Perkins, E.: Pathwise uniqueness for stochastic heat equations with Hölder continuous coefficients: the white noise case. Probab. Theory Relat. Fields 149(1–2), 1–96 (2011)

    Article  MATH  Google Scholar 

  25. Walsh, J.B.: An introduction to stochastic partial differential equations, in: École d’Été de Probabilités de Saint Flour XIV-1984, Springer, (1986), 265–439

  26. Xiong, J.: Super-Brownian motion as the unique strong solution to an SPDE. Ann. Probab. 41(2), 1030–1054 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Choi, J., Han, B.: A regularity theory for stochastic partial differential equations with a super-linear diffusion coefficient and a spatially homogeneous colored noise. Stoch. Process. Appl. 135, 1–30 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Han, B., Kim, K.: Boundary behavior and interior Hölder regularity of solution to nonlinear stochastic partial differential equations driven by space-time white noise. J. Differ. Equ. 269, 9904–9935 (2020)

    Article  MATH  Google Scholar 

  29. Mueller, C.: The critical parameter for the heat equation with a noise term to blow up in finite time, Ann. Probab. (2000) 1735–1746

  30. Grafakos, L.: Modern Fourier analysis, Vol. 250, Springer, (2009)

  31. Krylov, N.V.: Lectures on elliptic and parabolic equations in Sobolev spaces, Vol. 96, American Mathematical Soc., (2008)

  32. Krylov, N.V.: Maximum principle for spdes and its applications, stochastic differential equations: theory and applications: a Volume in Honor of Professor Boris L Rozovskii, World Scientific, (2007), 311–338

  33. Krylov, N.: Introduction to the theory of diffusion processes, Providence, (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beom-Seok Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1C1C2007792) and the BK21 FOUR (Fostering Outstanding Universities for Research) funded by the Ministry of Education (MOE, Korea) and National Research Foundation of Korea (NRF)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, BS. A regularity theory for stochastic generalized Burgers’ equation driven by a multiplicative space-time white noise. Stoch PDE: Anal Comp 11, 1123–1163 (2023). https://doi.org/10.1007/s40072-022-00256-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-022-00256-8

Keywords

Mathematics Subject Classification

Navigation