Skip to main content
Log in

Averaging principle and normal deviations for multi-scale stochastic hyperbolic–parabolic equations

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

We study the asymptotic behavior of stochastic hyperbolic–parabolic equations with slow–fast time scales. Both the strong and weak convergence in the averaging principle are established. Then we study the stochastic fluctuations of the original system around its averaged equation. We show that the normalized difference converges weakly to the solution of a linear stochastic wave equation. An extra diffusion term appears in the limit which is given explicitly in terms of the solution of a Poisson equation. Furthermore, sharp rates for the above convergence are obtained, which are shown not to depend on the regularity of the coefficients in the equation for the fast variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Bakhtin, V., Kifer, Y.: Diffusion approximation for slow motion in fully coupled averaging. Probab. Theory Rel. Fields 129, 157–181 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Bao, J., Yin, G., Yuan, C.: Two-time-scale stochastic partial differential equations driven by \(\alpha \)-stable noises: averaging principles. Bernoulli 23, 645–669 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Barbu, V., Da Prato, G.: The stochastic nonlinear damped wave equation. Appl. Math. Optim. 46, 125–141 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Barbu, V., Da Prato, G., Tubaro, L.: Stochastic wave equations with dissipative damping. Stoch. Proc. Appl. 117, 1001–1013 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Bogoliubov, N.N., Mitropolsky, Y.A.: Asymptotic Methods in the Theory of Non-linear Oscillations. Gordon and Breach Science Publishers, New York (1961)

    Google Scholar 

  6. Bréhier, C.E.: Strong and weak orders in averaging for SPDEs. Stoch. Process. Appl. 122, 2553–2593 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Bréhier, C.E.: Orders of convergence in the averaging principle for SPDEs: the case of a stochastically forced slow component. Stoch. Proc. Appl. 130, 3325–3368 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Bréhier, C.E.: Analysis of an HMM time-discretization scheme for a system of stochastic PDEs. SIAM J. Numer. Anal. 51, 1185–1210 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Bréhier, C.E., Debussche, A.: Kolmogorov equations and weak order analysis for SPDEs with nonlinear diffusion coefficient. J. Math. Pures Appl. 119, 193–254 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Cerrai, S.: A Khasminskii type averaging principle for stochastic reaction–diffusion equations. Ann. Appl. Probab. 19, 899–948 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Cerrai, S.: Normal deviations from the averaged motion for some reaction–diffusion equations with fast oscillating perturbation. J. Math. Pures Appl. 91, 614–647 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Cerrai, S.: Averaging principle for systems of reaction–diffusion equations with polynomial nonlinearities perturbed by multiplicative noise. SIAM J. Math. Anal 43, 2482–2518 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Cerrai, S., Freidlin, M.: Averaging principle for stochastic reaction–diffusion equations. Probab. Theory Related Fields 144, 137–177 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Cerrai, S., Glatt-Holtz, N.: On the convergence of stationary solutions in the Smoluchowski–Kramers approximation of infinite dimensional systems. J. Funct. Anal. 278, 108421 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Cerrai, S., Lunardi, A.: Averaging principle for non-autonomous slow–fast systems of stochastic reaction–diffusion equations: the almost periodic case. SIAM J. Math. Anal. 49, 2843–2884 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Chevyrev, I., Friz, P., Korepanov, A., Melbourne, I.: Superdiffusive limits for deterministic fast–slow dynamical systems. Probab. Theory Rel. Fields 178(3), 735–770 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Chojnowska-Michalik, A., Goldys, B.: Existence, uniqueness and invariant measures for stochastic semilinear equations on Hilbert spaces. Probab. Theory Rel. Fields 102, 331–356 (1995)

    MathSciNet  MATH  Google Scholar 

  18. Chow, P.L.: Thermoelastic wave propagation in a random medium and some related problems. Int. J. Eng. Sci. 11, 953–971 (1973)

    MATH  Google Scholar 

  19. Chow, P.L.: Asymptotics of solutions to semilinear stochastic wave equations. Anna. Appl. Probab. 16, 757–789 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Da Prato, G., Flandoli, F.: Pathwise uniqueness for a class of SDEs in Hilbert spaces and applications. J. Funct. Anal. 259, 243–267 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Da Prato, G., Flandoli, F., Priola, E., Röckner, M.: Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift. Ann. Probab. 41(5), 3306–3344 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Dalang, R., Khoshnevisan, D., Mueller, C., Nualart, D., Xiao, Y.: A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, Springer, Berlin (2009)

    Google Scholar 

  23. Debussche, A., Vovelle, J.: Diffusion limit for a stochastic kinetic problem. Commun. Pure Appl. Anal. 11, 2305–2326 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Einen, W., Liu, D., Vanden-Eijnden, E.: Analysis of multiscale methods for stochastic differential equations. Comm. Pure Appl. Math. 58, 1544–1585 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Fu, H., Wan, L., Liu, J., Liu, X.: Weak order in averaging principle for stochastic wave equation with a fast oscillation. Stoch. Process. Appl. 128, 2557–2580 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Fu, H., Wan, L., Liu, J.: Strong convergence in averaging principle for stochastic hyperbolic–parabolic equations with two time-scales. Stoch. Process. Appl. 125, 3255–3279 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Gehringer, J., Li, X.M.: Rough homogenisation with fractional dynamics. arXiv:2011.00075

  28. Gonzales-Gargate, I.I., Ruffino, P.R.: An averaging principle for diffusions in foliated spaces. Ann. Prob. 44, 567–588 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Hairer, M., Li, X.M.: Averaging dynamics driven by fractional Brownian motion. Ann. Prob. 48(4), 1826–1860 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Hairer, M., Pardoux, E.: Homogenization of periodic linear degenerate PDEs. J. Func. Anal. 255, 2462–2487 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Hairer, M., Pardoux, E.: Fluctuations around a homogenised semilinear random PDE. Arch. Ration Mech. Anal. 239(1), 151–217 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Kelly, D., Melbourne, I.: Homogenization for deterministic fast–slow systems with multidimensional multiplicative noise. J. Funct. Anal. 272, 4063–4102 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Khasminskii, R.Z.: On stochastic processes defined by differential equations with a small parameter. Theory Probab. Appl. 11, 211–228 (1966)

    MathSciNet  Google Scholar 

  34. Khasminskii, R.Z., Yin, G.: On averaging principles: an asymptotic expansion approach. SIAM J. Math. Anal. 35, 1534–1560 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Khasminskii, R.Z., Yin, G.: Limit behavior of two-time-scale diffusions revisited. J. Differ. Equ. 212(1), 85–113 (2005)

    MathSciNet  MATH  Google Scholar 

  36. Leung, A.W.: Asymptotically stable invariant manifold for coupled nonlinear parabolic–hyperbolic partial differential equations. J. Differ. Equ. 187, 184–200 (2003)

    MathSciNet  MATH  Google Scholar 

  37. Liu, D.: Strong convergence of principle of averaging for multiscale stochastic dynamical systems. Commun. Math. Sci. 8(4), 999–1020 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction. Universitext, Springer (2015)

    MATH  Google Scholar 

  39. Liu, W., Röckner, M., Sun, X., Xie, Y.: Averaging principle for slow–fast stochastic differential equations with time dependent locally Lipschitz coefficients. J. Differ. Equ. 268(6), 2910–2948 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Masieroa, F., Priola, E.: Well-posedness of semilinear stochastic wave equations with Hölder continuous coefficients. J. Differ. Equ. 263, 1773–1812 (2017)

    MATH  Google Scholar 

  41. Pardoux, E., Veretennikov, AYu.: On the Poisson equation and diffusion approximation. I. Ann. Probab. 29, 1061–1085 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Pardoux, E., Veretennikov, AYu.: On the Poisson equation and diffusion approximation 2. Ann. Probab. 31, 1166–1192 (2003)

    MathSciNet  MATH  Google Scholar 

  43. Rivera, J.E.M., Racke, R.: Smoothing properties, decay and global existence of solution to nonlinear coupled systems of thermoelasticity type. SIAM J. Math. Anal. 26, 1547–1563 (1995)

    MathSciNet  MATH  Google Scholar 

  44. Röckner, M., Xie, L.: Diffusion approximation for fully coupled stochastic differential equations. Ann. Probab. 49(3), 1205–1236 (2021)

    MathSciNet  MATH  Google Scholar 

  45. Röckner, M., Xie, L.: Averaging principle and normal deviations for multiscale stochastic systems. Commun. Math. Phys. 383, 1889–1937 (2021)

    MathSciNet  MATH  Google Scholar 

  46. Röckner, M., Xie, L., Yang, L.: Asymptotic behavior of multiscale stochastic partial differential equations. arXiv:2010.14897.pdf

  47. Veretennikov, AYu.: On the averaging principle for systems of stochastic differential equations. Math. USSR Sborn. 69, 271–284 (1991)

    MathSciNet  MATH  Google Scholar 

  48. Wang, W., Roberts, A.J.: Average and deviation for slow–fast stochastic partial differential equations. J. Differ. Equ. 253, 1265–1286 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Zhang, X., Zuazua, E.: Long-time behavior of a coupled heat-wave system arising in fluid–structure interaction. Arch. Ration. Mech. Anal. 184, 49–120 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for a careful reading of the first submitted version and for a number of useful comments and suggestions for improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the DFG through CRC 1283 and NSFC (Nos. 12071186, 11931004, 12090011).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Röckner, M., Xie, L. & Yang, L. Averaging principle and normal deviations for multi-scale stochastic hyperbolic–parabolic equations. Stoch PDE: Anal Comp 11, 869–907 (2023). https://doi.org/10.1007/s40072-022-00248-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-022-00248-8

Keywords

Mathematics Subject Classification

Navigation