Skip to main content
Log in

Initial-boundary value problem for stochastic transport equations

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

This paper concerns the Dirichlet initial-boundary value problem for stochastic transport equations with non-regular coefficients. First, the existence and uniqueness of the strong stochastic traces is proved. The existence of weak solutions relies on the strong stochastic traces, and also on the passage from the Stratonovich into Itô’s formulation for bounded domains. Moreover, the uniqueness is established without the divergence of the drift vector field bounded from below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attanasio, S., Flandoli, F.: Renormalized solutions for stochastic transport equations and the regularization by bilinear multiplication noise. Commun. Partial Differ. Equ. 36(8), 1455–1474 (2011)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L.: Transport equation and Cauchy problem for \(BV\) vector fields. Invent. Math. 158(2), 227–260 (2004)

    Article  MathSciNet  Google Scholar 

  3. Ambrosio, L., Crippa, G.: Continuity equations and ODE fows with non-smooth velocity, Lecture Notes of a course given at HeriottWatt University, Edinburgh. Proceeding of the Royal Society of Edinburgh, Section A: Mathematics. In press

  4. Bardos, C.: Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximation; application à l’équation de transport. Ann. Sci. École Norm. Sup. 4(3), 185–233 (1970)

    Article  Google Scholar 

  5. Boyer, F.: Trace theorems and spatial continuity properties for the solutions of the transport equation. Differ. Integral Equ. 18(8), 891–934 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Constantin, P., Iyer, G.: A stochastic Lagrangian approach to the Navier–Stokes equations in domains with boundary. Ann. Appl. Probab. 21(4), 1466–1492 (2011)

    Article  MathSciNet  Google Scholar 

  7. Crippa, G., Donadello, C., Spinolo, V.: Initial-boundary value problems for continuity equations with \(BV\) coefficients. J. de Mathématiques Pures et Appliquees 102(1), 79–98 (2014)

    Article  MathSciNet  Google Scholar 

  8. DiPerna, R., Lions, P.L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)

    Article  MathSciNet  Google Scholar 

  9. Evans, L.C., Gariepy, R.F.: Lecture Notes on Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  10. Fedrizzi, E., Neves, W., Olivera, C.: On a class of stochastic transport equations for \(L^2_{\text{ loc }}\) vector fields. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 18, 397–419 (2018)

    Article  MathSciNet  Google Scholar 

  11. Fedrizzi, E., Flandoli, F.: Noise prevents singularities in linear transport equations. J. Funct. Anal. 264, 1329–1354 (2013)

    Article  MathSciNet  Google Scholar 

  12. Fedrizzi, E., Flandoli, F.: Hölder Flow and Differentiability for SDEs with Nonregular Drift. Stochast. Anal. Appl. 31, 708–736 (2013)

    Article  Google Scholar 

  13. Feffeman, C., Pooley, B., Rodrigo, J.: Non-conservation of dimension in divergence-free solutions of passive and active scalar systems, arXiv:1905.05728v1 (2019)

  14. Flandoli, F., Gubinelli, M., Priola, E.: Well-posedness of the transport equation by stochastic perturbation. Invent. Math. 180(1), 1–53 (2010)

    Article  MathSciNet  Google Scholar 

  15. Funaki, F.: Construction of a solution of random transport equation with boundary condition. J. Math. Soc. Japan 31(4), 719–744 (1979)

    Article  MathSciNet  Google Scholar 

  16. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)

    MATH  Google Scholar 

  17. Kneuss, O., Neves, W.: On flows generated by vector fields with compact support. Portugaliae Math. (N.S) 75, 121–157 (2018)

    Article  MathSciNet  Google Scholar 

  18. Kunita, H.: Stochastic differential equations and stochastic flows of diffeomorphisms. Lectures Notes in Mathematics, Springer-Verlag, Berlin 1097, 143–303 (1982)

  19. Kunita, H.: Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  20. Mollinedo, D.A.C., Olivera, C.: Stochastic continuity equation with non-smooth velocity. Annali di Matematica 196(5), 2017 (2017)

    Article  Google Scholar 

  21. Mischler, S.: On the trace problem for the solutions of the Vlasov equations. Commun. Part. Differ. Equ. 25(7–8), 1415–1443 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Neves, W., Olivera, C.: Wellposedness for stochastic continuity equations with Ladyzhenskaya-Prodi-Serrin condition. Nonlinear Differ. Equ. Appl. 22, 1247–1258 (2015)

    Article  MathSciNet  Google Scholar 

  23. Neves, W., Panov, E., Silva, J.: Strong traces for conservation laws with general nonautonomous flux. SIAM J. Math. Anal. 50(6), 6049–6081 (2018)

    Article  MathSciNet  Google Scholar 

  24. Ogawa, S.: A partial differential equation with the white noise as a coefficient. Z. Wahr. verw. Geb. 28, 53–71 (1973)

    Article  MathSciNet  Google Scholar 

  25. Pardoux, E.: Equations aux dérivées partielles stochastiques non lineaires monotones. Etude de solutions fortes de type Itô, PhD Thesis, Universite Paris Sud (1975)

  26. Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edition. Stochastic modeling and applied probability, 21. Springer, Berlin (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wladimir Neves.

Ethics declarations

Conflict of interest

The author Wladimir Neves has received research grants from CNPq through the Grant 308064/2019-4, and also by FAPESP through the Grant 2013/15795-9. C. Olivera is partially supported by FAPESP by the Grants 2017/17670-0 and 2015/07278-0.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

At this point we fix some notation and material used through of this paper.

Let us fix a stochastic basis with a d-dimensional Brownian motion

$$ \big ( \Omega , {\mathcal {F}}, \{ {\mathcal {F}}_t: t \in [0,T] \}, {\mathbb {P}}, (B_{t}) \big ). $$

Then, we recall to help the intuition, the following definitions

$$ \begin{aligned} \text {It}{\hat{\text {o}}}:&\ \int _{0}^{t} X_s dB_s= \lim _{n \rightarrow \infty } \sum _{t_i\in \pi _n, t_i\le t} X_{t_i} (B_{t_{i+1} \wedge t} - B_{t_i}), \\ \text {Stratonovich:}&\ \int _{0}^{t} X_s \circ dB_s= \lim _{n \rightarrow \infty } \sum _{t_i\in \pi _n, t_i\le t} \frac{ (X_{t_{i+1} \wedge t } + X_{t_i} ) }{2} (B_{t_{i+1} \wedge t} - B_{t_i}), \\ \text {Covariation:}&\ [X, Y ]_t = \lim _{n \rightarrow \infty } \sum _{t_i\in \pi _n, t_i\le t} (X_{t_{i+1} \wedge t} - X_{t_i} ) (Y_{t_{i+1} \wedge t} - Y_{t_i}), \end{aligned} $$

where \(\pi _n\) is a sequence of finite partitions of [0, T] with size \( |\pi _n| \rightarrow 0\) and elements \(0 = t_0< t_1 < \ldots \). The limits are in the sense of probability, and uniformly in time on compact intervals. Details about these facts can be found in Kunita [18]. Also we address from that book, Itô’s formula, the chain rule for the stochastic integral, for any continuous d-dimensional semimartingale \(X = (X_1,X_2,\ldots ,X_d)\), and twice continuously differentiable and real valued function f on \({\mathbb {R}}^{d}\).

Let \(U \subset {\mathbb {R}}^{n}\) be an open set, and \(\Gamma \) its boundary. A map \(\Psi :[0,1] \times \Gamma \rightarrow {\overline{U}}\) is said an admissible deformation, when satisfies the following conditions:

(1):

For all \(r \in \Gamma \), \(\Psi (0,r)=r\).

(2):

The derivative of the map \([0,1] \ni \tau \mapsto \Psi (\tau , r)\) at \(\tau = 0\) is not orthogonal to \({\mathbf {n}}(r)\), for each \(r \in \Gamma \).

Moreover, for each \(\tau \in [0,1]\), we denote: \(\Psi _\tau \) the mapping from \(\Gamma \) to \({\overline{U}}\), given by \(\Psi _\tau (x):=\Psi (\tau ,x)\); \(\Gamma ^\tau = \Psi _\tau (\Gamma )\); \({\mathbf {n}}^\tau \) the unit outward normal field in \(\Gamma ^\tau \). In particular, \({\mathbf {n}}^0(r)= {\mathbf {n}}(r)\) is the unit outward normal field in \(\Gamma \).

Now, we define a level set function h associated with the deformation \(\Psi _\tau \). For \(\delta > 0\) sufficiently small we define

$$ h(x):= \left\{ \begin{aligned} \min \{\tau ,\delta \},&\quad \text {if} \, x \in U, \\ - \min \{\tau ,\delta \},&\quad \text {if} \, x \in {\mathbb {R}}^n \setminus U. \end{aligned}\right. $$

The function h(x) is Lipschitz continuous in \({\mathbb {R}}^n\), and \(C^2\) on the closure of \(\left\{ x \in {\mathbb {R}}^n: |h(x)|< \delta \right\} \), see Gilbarg, Trudinger [16], p. 355.

Given a function \(f \in L^1(U)\), we recall the global approximation by smooth functions, that is, \(f_\varepsilon \in L^1(U) \cap C^\infty ({\overline{U}})\), such that, \(f_\varepsilon \rightarrow f\) in \(L^1\), see Evans, Gariepy [9] Chapter 4.2, Theorem 1 and Theorem 3. In fact, this result follows from a convenient modification of the standard mollification of f by a standard (symmetric) mollifier \(\rho \), that is a positive radial and regular function with compact support in \({\mathbb {R}}^d\), such that \(\int \rho (x) dx= 1\). For each \(\varepsilon > 0\), we define \(\rho _\varepsilon (x):= \varepsilon ^{-d} \rho (\frac{x}{\varepsilon })\). For convenience, that is to fix the notation, let us give the main idea. For any \(\varepsilon > 0\) fixed, \(0 \le \delta \le \varepsilon \), and \(y \in {\overline{U}}\), we define

$$ y^\varepsilon := y + \lambda \, \varepsilon \, \nabla h(y), $$

for \(\lambda > 0\) sufficiently large. Then, we take a standard mollifier \(\rho _{\varepsilon }\), and for any \(u \in L_{\text {loc}}^{1}(U_T) \), we define the following (space) global approximation

$$ u_{\varepsilon }(t,y) \equiv (u *_{{\mathbf {n}}} \rho _\varepsilon ) (t,y):= \int _{U} u(t,z) \rho _{\varepsilon }(y^\varepsilon -z) \ dz. $$

Therefore, \(u_\varepsilon \in L^1_\text {loc}([0,T]; C^\infty ({\overline{U}}))\) and converges to u in \(L^1_\text {loc}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neves, W., Olivera, C. Initial-boundary value problem for stochastic transport equations. Stoch PDE: Anal Comp 9, 674–701 (2021). https://doi.org/10.1007/s40072-020-00180-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-020-00180-9

Keywords

Navigation