Skip to main content
Log in

A central limit theorem and moderate deviation principle for the stochastic 2D Oldroyd model of order one

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

In this work, we discuss some asymptotic behavior of the stochastic two-dimensional viscoelastic fluid flow equations, arising from the Oldroyd model of order one, for the non-Newtonian fluid flows. We prove a central limit theorem and establish the moderate deviation principle for such models using a weak convergence method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agranovich, Y.Y., Sobolevskii, P.E.: Investigation of viscoelastic fluid mathematical model. RAC. Ukranian SSR. Ser. A 10, 71–73 (1989)

    Google Scholar 

  2. Agranovich, Yu Ya., Sobolevskii, P.E.: The motion of non-linear viscoelastic fluid. RAC. USSR 314, 231–233 (1990)

    Google Scholar 

  3. Agranovich, Yu Ya., Sobolevskii, P.E.: Motion of non-linear viscoelastic fluid. Nonlinear Anal. 32, 755–760 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden (1976)

    MATH  Google Scholar 

  5. Barbu, V., Bonaccorsi, S., Tubaro, L.: Existence and asymptotic behavior for hereditary stochastic evolution equations. Appl. Math. Optim. 69, 273–314 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Breit, D.: An introduction to stochastic Navier–Stokes equations. In: Bulícek, M., Feireisl, E., Pokorný, M. (eds.) New Trends and Results in Mathematical Description of Fluid Flows. Necas Center Series, pp. 1–51. Springer, Berlin (2018)

    Google Scholar 

  7. Burkholder, D.L.: The best constant in the Davis inequality for the expectation of the martingale square function. Trans. Am. Math. Soc. 354(1), 91–105 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Budhiraja, A., Dupuis, P.: A variational representation for positive functionals of infinite dimensional Brownian motion. Probab. Math. Stat. 20, 39–61 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Budhiraja, A., Dupuis, P., Maroulas, V.: Large deviations for infinite dimensional stochastic dynamical systems. Ann. Probab. 36, 1390–1420 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Cannon, J.R., Ewing, R.E., He, Y., Lin, Y.: A modified nonlinear Galerkin method for the viscoelastic fluid motion equations. Int. J. Eng. Sci. 37, 1643–1662 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Chen, X.: The moderate deviations of independent random vectors in a Banach space. Chin. J. Appl. Probab. Stat. 7, 24–33 (1991)

    MathSciNet  MATH  Google Scholar 

  12. Chow, P.-L.: Stochastic Partial Differential Equations. Chapman & Hall/CRC, New York (2007)

    MATH  Google Scholar 

  13. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  14. Davis, B.: On the integrability of the martingale square function. Israel J. Math. 8(2), 187–190 (1970)

    MathSciNet  MATH  Google Scholar 

  15. De Acosta, A.: Moderate deviations and associated Laplace approximations for sums of independent random vectors. Trans. Am. Math. Soc. 329, 357–375 (1992)

    MathSciNet  MATH  Google Scholar 

  16. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer, New York (2000)

    MATH  Google Scholar 

  17. Eichelsbacher, P., Löwe, M.: Moderate deviations for iid random variables. ESAIM Probab. Stat. 7, 209–218 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Flandoli, F.: An introduction to 3D stochastic fluid dynamics. In: Da Prato, G., Rückner, M. (eds.) SPDE in Hydrodynamic: Recent Progress and Prospects. Lecture Notes in Mathematics, vol. 1942, pp. 51–150. Springer, Berlin (2008)

    Google Scholar 

  19. Flandoli, F., Gatarek, D.: Martingale and stationary solution for stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 102, 367–391 (1995)

    MathSciNet  MATH  Google Scholar 

  20. Gourcy, M.: A large deviation principle for 2D stochastic Navier–Stokes equation. Stoch. Process. Appl. 117(7), 904–927 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Gynögy, I., Krylov, N.V.: On stochastic equations with respect to semimartingales II. Itô formula in Banach spaces. Stochastics 6(3–4), 153–173 (1982)

    Google Scholar 

  22. Haseena, A., Suvinthra, M., Mohan, M.T., Balachandran, K.: Moderate deviations for stochastic tidal dynamics equation with multiplicative noise. Appl. Anal. (2020). https://doi.org/10.1080/00036811.2020.1781827

  23. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland Mathematical Library, vol. 24. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  24. Inglot, T., Kallenberg, W.: Moderate deviations of minimum contrast estimators under contamination. Ann. Stat. 31, 852–879 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Joseph, D.: Fluid Dynamics of Viscoelastic Liquids. Springer, New York (1990)

    MATH  Google Scholar 

  26. Karazeeva, N.A., Kotsiolis, A.A., Oskolkov, A.P.: Dynamical system generated by the equations of motion of an Oldroyd fluid of order \(L\). J. Sov. Math. 47(2), 2399–2403 (1989)

    MathSciNet  MATH  Google Scholar 

  27. Karazeeva, N.A., Kotsiolis, A.A., Oskolkov, A.P.: Dynamic system and attractors generated by the initial boundary value problems for equations of motion of linear viscoelastic fluids. Trudy Mat. Inst. Steklov 188, 60–87 (1990)

    Google Scholar 

  28. Karazeeva, N.A., Kotsiolis, A.A., Oskolkov, A.P.: Dynamical systems generated by initial-boundary value problems for equations of motion of linear viscoelastic fluids. Proc. Steklov Inst. Math. 3, 73–108 (1991)

    MATH  Google Scholar 

  29. Klebaner, F.C., Lipster, R.: Moderate deviations for randomly perturbed dynamical systems. Stoch. Process. Appl. 80, 157–176 (1999)

    MathSciNet  MATH  Google Scholar 

  30. Kotsiolis, A.A., Oskolkov, A.P.: On the solvability of fundamental initial-boundary value problem for the motion equations of Oldroyd’s fluid and the behavior of solutions, when \(t\rightarrow \infty \). Notes Sci. LOMI 150(6), 48–52 (1986)

    MATH  Google Scholar 

  31. Kotsiolis, A.A., Oskolkov, A.P.: On limit states and attractors for equations of motion of the Oldroyd fluids. Zap. Nauchn. Semin. POMI 152, 97–100 (1986)

    Google Scholar 

  32. Kotsiolis, A.A., Oskolkov, A.P.: On a dynamic system generated by equations of motion of the Oldroyd fluids. Zap. Nauchn. Semin. POMI 155, 119–125 (1986)

    MATH  Google Scholar 

  33. Kotsiolis, A.A., Oskolkov, A.P.: Dynamical system generated by the equations of motion of Oldroyd fluids. J. Sov. Math. 41(2), 967–970 (1988)

    MathSciNet  MATH  Google Scholar 

  34. Kallenberg, W.: On moderate deviation theory in estimation. Ann. Stat. 11, 498–504 (1983)

    MathSciNet  MATH  Google Scholar 

  35. Kallianpur, G., Xiong, J.: Stochastic Differential Equations in Infinite Dimensional Spaces. Institute of Mathematical Statistics, Hayward (1996)

    MATH  Google Scholar 

  36. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  37. Manna, U., Mukherjee, D.: Strong solutions of stochastic models for viscoelastic flows of Oldroyd type. Nonlinear Anal. 165, 198–242 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Métivier, M.: Stochastic Partial Differential Equations in Infinite Dimensional spaces. Quaderni, Scuola Normale Superiore, Pisa (1988)

    MATH  Google Scholar 

  39. Mohan, M.T., Sritharan, S.S.: Stochastic Navier–Stokes equation perturbed by Lévy noise with hereditary viscosity. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22(1), 1950006 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Mohan, M.T.: Well posedness, large deviations and ergodicity of the stochastic 2D Oldroyd model of order one. Stoch. Process. Appl. 130(8), 4513–4562 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Mohan, M.T.: Deterministic and stochastic equations of motion arising in Oldroyd fluids of order one: existence, uniqueness, exponential stability and invariant measures. Stoch. Anal. Appl. 38(1), 1–61 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Mohan, M.T.: On the three dimensional Kelvin–Voigt fluids: global solvability, ex-ponential stability and exact controllability of Galerkin approximations. Evol. Equ. Control Theory 9(2), 301–339 (2020)

    MathSciNet  MATH  Google Scholar 

  43. Ondreját, M.: Uniqueness for stochastic evolution equations in Banach spaces. Dissertationes Math. (Rozprawy Mat.) vol. 426 (2004)

  44. Oldroyd, J.G.: Reologia-Mir, p. 805 (1962)

  45. Oskolkov, A.P.: Initial boundary value problems for the equations of motion of Kelvin–Voigt fluids and Oldroyd fluids. Proc. Steklov Inst. Math. 2, 137–182 (1989)

    MATH  Google Scholar 

  46. Ortov, V.P., Sobolevskii, P.E.: On mathematical models of a viscoelastic with a memory. Differ. Integral Equ. 4, 103–115 (1991)

    Google Scholar 

  47. Razafimandimby, P.: On stochastic models describing the motions of randomly forced linear viscoelastic fluids. J. Inequal. Appl. 210, 932053 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Röckner, M., Schmuland, B., Zhang, X.: Yamada–Watanabe theorem for stochastic evolution equations in infinite dimensions. Condens. Matter Phys. 11(2), 247–259 (2008)

    Google Scholar 

  49. Skorokhod, A.V.: Limit theorems for stochastic processes. Theory Probab. Appl. 1(3), 261–290 (1956)

    MathSciNet  MATH  Google Scholar 

  50. Sritharan, S.S., Sundar, P.: Large deviations for the two-dimensional Navier–Stokes equations with multiplicative noise. Stoch. Process. Appl. 116, 1636–1659 (2006)

    MathSciNet  MATH  Google Scholar 

  51. Temam, R.: Navier–Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  52. Temam, R.: Navier–Stokes equations and nonlinear functional analysis. In: CBMS-NSF Regional Conference Series in Applied Mathematics, 2nd edn. (1995)

  53. Varadhan, S.R.S.: Large deviations and Applications. CBMS-NSF Series in Applied Mathematics, vol. 46. SIAM, Philadelphia (1984)

    MATH  Google Scholar 

  54. Visik, M.I., Fursikov, A.V.: Mathematical Problems of Statistical Hydromechanics. Kluwer, Dordrecht (1980)

    MATH  Google Scholar 

  55. Wang, R., Zhai, J., Zhang, T.: A moderate deviation principle for 2-D stochastic Navier–Stokes equations. J.Differ. Equ. 258, 3363–3390 (2015)

    MathSciNet  MATH  Google Scholar 

  56. Wang, R., Zhang, T.S.: Moderate deviations for stochastic reaction-diffusion equations with multiplicative noise. Potential Anal. 42, 99–113 (2015)

    MathSciNet  MATH  Google Scholar 

  57. Wu, L.: Moderate deviations of dependent random variables related to CLT. Ann. Probab. 23, 420–445 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

M. T. Mohan would like to thank the Department of Science and Technology (DST), India for Innovation in Science Pursuit for Inspired Research (INSPIRE) Faculty Award (IFA17-MA110). The author sincerely would like to thank the reviewer for his/her valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manil T. Mohan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, M.T. A central limit theorem and moderate deviation principle for the stochastic 2D Oldroyd model of order one. Stoch PDE: Anal Comp 9, 510–558 (2021). https://doi.org/10.1007/s40072-020-00176-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-020-00176-5

Keywords

Mathematics Subject Classification

Navigation