Abstract
We study the iterative algorithm proposed by Armstrong et al. (An iterative method for elliptic problems with rapidly oscillating coefficients, 2018. arXiv preprint arXiv:1803.03551) to solve elliptic equations in divergence form with stochastic stationary coefficients. Such equations display rapidly oscillating coefficients and thus usually require very expensive numerical calculations, while this iterative method is comparatively easy to compute. In this article, we strengthen the estimate for the contraction factor achieved by one iteration of the algorithm. We obtain an estimate that holds uniformly over the initial function in the iteration, and which grows only logarithmically with the size of the domain.
This is a preview of subscription content, access via your institution.


References
Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)
Allaire, G., Amar, M.: Boundary layer tails in periodic homogenization. ESAIM Control Optim. Calc. Var. 4, 209–243 (1999)
Armstrong, S., Hannukainen, A., Kuusi, T., Mourrat, J.-C.: An iterative method for elliptic problems with rapidly oscillating coefficients (2018). arXiv preprint arXiv:1803.03551
Armstrong, S., Kuusi, T., Mourrat, J.-C.: Mesoscopic higher regularity and subadditivity in elliptic homogenization. Commun. Math. Phys. 347(2), 315–361 (2016)
Armstrong, S., Kuusi, T., Mourrat, J.-C.: The additive structure of elliptic homogenization. Invent. Math. 208(3), 999–1154 (2017)
Armstrong, S., Kuusi, T., Mourrat, J.-C.: Quantitative Stochastic Homogenization and Large-scale Regularity, Volume 352 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Cham (2019)
Armstrong, S.N., Mourrat, J.-C.: Lipschitz regularity for elliptic equations with random coefficients. Arch. Ration. Mech. Anal. 219(1), 255–348 (2016)
Armstrong, S.N., Smart, C.K.: Quantitative stochastic homogenization of convex integral functionals. Ann. Sci. Éc. Norm. Supér. (4) 49(2), 423–481 (2016)
Avellaneda, M., Lin, F.-H.: Compactness methods in the theory of homogenization. Commun. Pure Appl. Math. 40(6), 803–847 (1987)
Babuska, I., Lipton, R.: Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Model. Simul. 9(1), 373–406 (2011)
Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. AMS Chelsea Publishing, Providence (2011). (Reprint of the 1978 original with corrections and bibliographical additions)
Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)
Efendiev, Y., Galvis, J., Hou, T.Y.: Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 251, 116–135 (2013)
Egloffe, A.-C., Gloria, A., Mourrat, J.-C., Nguyen, T.N.: Random walk in random environment, corrector equation and homogenized coefficients: from theory to numerics, back and forth. IMA J. Numer. Anal. 35(2), 499–545 (2015)
Engquist, B., Luo, E.: New coarse grid operators for highly oscillatory coefficient elliptic problems. J. Comput. Phys. 129(2), 296–306 (1996)
Engquist, B., Luo, E.: Convergence of a multigrid method for elliptic equations with highly oscillatory coefficients. SIAM J. Numer. Anal. 34(6), 2254–2273 (1997)
Evans, L.C.: Partial differential equations. 19, xviii+662 (1998)
Fischer, J.: The choice of representative volumes in the approximation of effective properties of random materials (2018). arXiv preprint arXiv:1807.00834
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). (Reprint of the 1998 edition)
Gloria, A.: Numerical approximation of effective coefficients in stochastic homogenization of discrete elliptic equations. ESAIM, Math. Model. Numer. Anal. 46(1), 1–38 (2012)
Gloria, A., Neukamm, S., Otto, F.: An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations. ESAIM Math. Model. Numer. Anal. 48(2), 325–346 (2014)
Gloria, A., Neukamm, S., Otto, F.: A regularity theory for random elliptic operators (2014). arXiv preprint arXiv:1409.2678
Gloria, A., Neukamm, S., Otto, F.: Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics. Invent. Math. 199(2), 455–515 (2015)
Gloria, A., Otto, F.: An optimal variance estimate in stochastic homogenization of discrete elliptic equations. Ann. Probab. 39(3), 779–856 (2011)
Gloria, A., Otto, F.: An optimal error estimate in stochastic homogenization of discrete elliptic equations. Ann. Appl. Probab. 22(1), 1–28 (2012)
Gloria, A., Otto, F.: The corrector in stochastic homogenization: optimal rates, stochastic integrability, and fluctuations (2015). arXiv preprint arXiv:1510.08290
Grasedyck, L., Greff, I., Sauter, S.: The AL basis for the solution of elliptic problems in heterogeneous media. Multiscale Model. Simul. 10(1), 245–258 (2012)
Griebel, M., Knapek, S.: A multigrid-homogenization method. In: Modeling and Computation in Environmental Sciences (Stuttgart 1995), Volume 59 of Notes Numerical Fluid Mechanics, pp. 187–202. Friedr. Vieweg, Braunschweig (1997)
Gu, C.: An efficient algorithm for solving elliptic problems on percolation clusters (2019). arXiv preprint arXiv:1907.13571
Hannukainen, A., Mourrat, J.-C., Stoppels, H.: Computing homogenized coefficients via multiscale representation and hierarchical hybrid grids (2019). arXiv preprint arXiv:1905.06751
Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994). (Translated from the Russian by G. A. Yosifian [G. A. Iosifć yan])
Knapek, S.: Matrix-dependent multigrid homogeneization for diffusion problems. SIAM J. Sci. Comput. 20(2), 515–533 (1998)
Kornhuber, R., Yserentant, H.: Numerical homogenization of elliptic multiscale problems by subspace decomposition. Multiscale Model. Simul. 14(3), 1017–1036 (2016)
Kozlov, S.M.: Averaging of random operators. Math. USSR Sb. 37, 167–180 (1980)
Målqvist, A., Peterseim, D.: Localization of elliptic multiscale problems. Math. Comput. 83(290), 2583–2603 (2014)
Ming, P., Zhang, P.: Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Am. Math. Soc. 18(1), 121–156 (2005)
Mourrat, J.-C.: Efficient methods for the estimation of homogenized coefficients. Found. Comput. Math. 19(2), 435–483 (2019)
Mourrat, J.-C.: An informal introduction to quantitative stochastic homogenization. J. Math. Phys. 60(3), 031506 (2019). 11
Naddaf, A., Spencer, T.: Estimates on the variance of some homogenization problems. Unpublished preprint (1998)
Owhadi, H.: Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games. SIAM Rev. 59(1), 99–149 (2017)
Owhadi, H., Zhang, L., Berlyand, L.: Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM Math. Model. Numer. Anal. 48(2), 517–552 (2014)
Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003)
Simon, B.: Methods of Modern Mathematical Physics: Functional Analysis. Academic Press, Cambridge (1980)
Tartar, L.: The General Theory of Homogenization. A Personalized Introduction, vol. 7. Springer, Berlin (2009)
Yurinskii, V.V.: Averaging of symmetric diffusion in random medium. Sib. Math. J. 27(4), 603–613 (1986)
Acknowledgements
I am grateful to Jean-Christophe Mourrat for his suggestion to study this topic, helpful discussions and detailed reading of the article.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gu, C. Uniform estimate of an iterative method for elliptic problems with rapidly oscillating coefficients. Stoch PDE: Anal Comp 8, 787–818 (2020). https://doi.org/10.1007/s40072-019-00159-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40072-019-00159-1
Keywords
- Stochastic homogenization
- Elliptic equation
- Numerical algorithm
- Iterative method