Skip to main content
Log in

Uniform estimate of an iterative method for elliptic problems with rapidly oscillating coefficients

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

We study the iterative algorithm proposed by Armstrong et al. (An iterative method for elliptic problems with rapidly oscillating coefficients, 2018. arXiv preprint arXiv:1803.03551) to solve elliptic equations in divergence form with stochastic stationary coefficients. Such equations display rapidly oscillating coefficients and thus usually require very expensive numerical calculations, while this iterative method is comparatively easy to compute. In this article, we strengthen the estimate for the contraction factor achieved by one iteration of the algorithm. We obtain an estimate that holds uniformly over the initial function in the iteration, and which grows only logarithmically with the size of the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allaire, G., Amar, M.: Boundary layer tails in periodic homogenization. ESAIM Control Optim. Calc. Var. 4, 209–243 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Armstrong, S., Hannukainen, A., Kuusi, T., Mourrat, J.-C.: An iterative method for elliptic problems with rapidly oscillating coefficients (2018). arXiv preprint arXiv:1803.03551

  4. Armstrong, S., Kuusi, T., Mourrat, J.-C.: Mesoscopic higher regularity and subadditivity in elliptic homogenization. Commun. Math. Phys. 347(2), 315–361 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Armstrong, S., Kuusi, T., Mourrat, J.-C.: The additive structure of elliptic homogenization. Invent. Math. 208(3), 999–1154 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Armstrong, S., Kuusi, T., Mourrat, J.-C.: Quantitative Stochastic Homogenization and Large-scale Regularity, Volume 352 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Cham (2019)

    Google Scholar 

  7. Armstrong, S.N., Mourrat, J.-C.: Lipschitz regularity for elliptic equations with random coefficients. Arch. Ration. Mech. Anal. 219(1), 255–348 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Armstrong, S.N., Smart, C.K.: Quantitative stochastic homogenization of convex integral functionals. Ann. Sci. Éc. Norm. Supér. (4) 49(2), 423–481 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Avellaneda, M., Lin, F.-H.: Compactness methods in the theory of homogenization. Commun. Pure Appl. Math. 40(6), 803–847 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Babuska, I., Lipton, R.: Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Model. Simul. 9(1), 373–406 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. AMS Chelsea Publishing, Providence (2011). (Reprint of the 1978 original with corrections and bibliographical additions)

    MATH  Google Scholar 

  12. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)

    Book  MATH  Google Scholar 

  13. Efendiev, Y., Galvis, J., Hou, T.Y.: Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 251, 116–135 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Egloffe, A.-C., Gloria, A., Mourrat, J.-C., Nguyen, T.N.: Random walk in random environment, corrector equation and homogenized coefficients: from theory to numerics, back and forth. IMA J. Numer. Anal. 35(2), 499–545 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Engquist, B., Luo, E.: New coarse grid operators for highly oscillatory coefficient elliptic problems. J. Comput. Phys. 129(2), 296–306 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Engquist, B., Luo, E.: Convergence of a multigrid method for elliptic equations with highly oscillatory coefficients. SIAM J. Numer. Anal. 34(6), 2254–2273 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Evans, L.C.: Partial differential equations. 19, xviii+662 (1998)

  18. Fischer, J.: The choice of representative volumes in the approximation of effective properties of random materials (2018). arXiv preprint arXiv:1807.00834

  19. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). (Reprint of the 1998 edition)

    Book  MATH  Google Scholar 

  20. Gloria, A.: Numerical approximation of effective coefficients in stochastic homogenization of discrete elliptic equations. ESAIM, Math. Model. Numer. Anal. 46(1), 1–38 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gloria, A., Neukamm, S., Otto, F.: An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations. ESAIM Math. Model. Numer. Anal. 48(2), 325–346 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gloria, A., Neukamm, S., Otto, F.: A regularity theory for random elliptic operators (2014). arXiv preprint arXiv:1409.2678

  23. Gloria, A., Neukamm, S., Otto, F.: Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics. Invent. Math. 199(2), 455–515 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gloria, A., Otto, F.: An optimal variance estimate in stochastic homogenization of discrete elliptic equations. Ann. Probab. 39(3), 779–856 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gloria, A., Otto, F.: An optimal error estimate in stochastic homogenization of discrete elliptic equations. Ann. Appl. Probab. 22(1), 1–28 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gloria, A., Otto, F.: The corrector in stochastic homogenization: optimal rates, stochastic integrability, and fluctuations (2015). arXiv preprint arXiv:1510.08290

  27. Grasedyck, L., Greff, I., Sauter, S.: The AL basis for the solution of elliptic problems in heterogeneous media. Multiscale Model. Simul. 10(1), 245–258 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Griebel, M., Knapek, S.: A multigrid-homogenization method. In: Modeling and Computation in Environmental Sciences (Stuttgart 1995), Volume 59 of Notes Numerical Fluid Mechanics, pp. 187–202. Friedr. Vieweg, Braunschweig (1997)

  29. Gu, C.: An efficient algorithm for solving elliptic problems on percolation clusters (2019). arXiv preprint arXiv:1907.13571

  30. Hannukainen, A., Mourrat, J.-C., Stoppels, H.: Computing homogenized coefficients via multiscale representation and hierarchical hybrid grids (2019). arXiv preprint arXiv:1905.06751

  31. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994). (Translated from the Russian by G. A. Yosifian [G. A. Iosifć yan])

    Book  Google Scholar 

  32. Knapek, S.: Matrix-dependent multigrid homogeneization for diffusion problems. SIAM J. Sci. Comput. 20(2), 515–533 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kornhuber, R., Yserentant, H.: Numerical homogenization of elliptic multiscale problems by subspace decomposition. Multiscale Model. Simul. 14(3), 1017–1036 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kozlov, S.M.: Averaging of random operators. Math. USSR Sb. 37, 167–180 (1980)

    Article  MATH  Google Scholar 

  35. Målqvist, A., Peterseim, D.: Localization of elliptic multiscale problems. Math. Comput. 83(290), 2583–2603 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ming, P., Zhang, P.: Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Am. Math. Soc. 18(1), 121–156 (2005)

    MathSciNet  MATH  Google Scholar 

  37. Mourrat, J.-C.: Efficient methods for the estimation of homogenized coefficients. Found. Comput. Math. 19(2), 435–483 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mourrat, J.-C.: An informal introduction to quantitative stochastic homogenization. J. Math. Phys. 60(3), 031506 (2019). 11

    Article  MathSciNet  MATH  Google Scholar 

  39. Naddaf, A., Spencer, T.: Estimates on the variance of some homogenization problems. Unpublished preprint (1998)

  40. Owhadi, H.: Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games. SIAM Rev. 59(1), 99–149 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Owhadi, H., Zhang, L., Berlyand, L.: Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM Math. Model. Numer. Anal. 48(2), 517–552 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  MATH  Google Scholar 

  43. Simon, B.: Methods of Modern Mathematical Physics: Functional Analysis. Academic Press, Cambridge (1980)

    MATH  Google Scholar 

  44. Tartar, L.: The General Theory of Homogenization. A Personalized Introduction, vol. 7. Springer, Berlin (2009)

    MATH  Google Scholar 

  45. Yurinskii, V.V.: Averaging of symmetric diffusion in random medium. Sib. Math. J. 27(4), 603–613 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am grateful to Jean-Christophe Mourrat for his suggestion to study this topic, helpful discussions and detailed reading of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenlin Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, C. Uniform estimate of an iterative method for elliptic problems with rapidly oscillating coefficients. Stoch PDE: Anal Comp 8, 787–818 (2020). https://doi.org/10.1007/s40072-019-00159-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-019-00159-1

Keywords

Navigation