Higher-order pathwise theory of fluctuations in stochastic homogenization

Abstract

We consider linear elliptic equations in divergence form with stationary random coefficients of integrable correlations. We characterize the fluctuations of a macroscopic observable of a solution to relative order \(\frac{d}{2}\), where d is the spatial dimension; the fluctuations turn out to be Gaussian. As for previous work on the leading order, this higher-order characterization relies on a pathwise proximity of the macroscopic fluctuations of a general solution to those of the (higher-order) correctors, via a (higher-order) two-scale expansion injected into the “homogenization commutator”, thus confirming the scope of this notion. This higher-order generalization sheds a clearer light on the algebraic structure of the higher-order versions of correctors, flux correctors, two-scale expansions, and homogenization commutators. It reveals that in the same way as this algebra provides a higher-order theory for microscopic spatial oscillations, it also provides a higher-order theory for macroscopic random fluctuations, although both phenomena are not directly related. We focus on the model framework of an underlying Gaussian ensemble, which allows for an efficient use of (second-order) Malliavin calculus for stochastic estimates. On the technical side, we introduce annealed Calderón–Zygmund estimates for the elliptic operator with random coefficients, which conveniently upgrade the known quenched large-scale estimates.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. 1.

    We systematically use Einstein’s summation rule on repeated indices.

  2. 2.

    For \(n=1\) the notation \({\bar{{\varvec{a}}}}^{*,n}_{ji_1\ldots i_{n-2}}e_{i_{n-1}}\) stands for \({\bar{{\varvec{a}}}}^{*,1}e_{j}\), and we use a similar unifying notation throughout in the sequel.

References

  1. 1.

    Abdulle, A., Pouchon, T.: Effective models and numerical homogenization for wave propagation in heterogeneous media on arbitrary timescales. Preprint. arXiv:1905.09062

  2. 2.

    Aida, S., Stroock, D.: Moment estimates derived from Poincaré and logarithmic Sobolev inequalities. Math. Res. Lett. 1(1), 75–86 (1994)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Armstrong, S., Kuusi, T., Mourrat, J.-C.: Quantitative Stochastic Homogenization and Large-Scale Regularity, Volume 352 of Grundlehren der Mathematischen Wissenschaften. Springer, Cham (2019)

    Book  Google Scholar 

  4. 4.

    Armstrong, S.N., Daniel, J.-P.: Calderón–Zygmund estimates for stochastic homogenization. J. Funct. Anal. 270(1), 312–329 (2016)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Armstrong, S.N., Kuusi, T., Mourrat, J.-C.: The additive structure of elliptic homogenization. Invent. Math. 208, 999–1154 (2017)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Armstrong, S.N., Mourrat, J.-C.: Lipschitz regularity for elliptic equations with random coefficients. Arch. Ration. Mech. Anal. 219(1), 255–348 (2016)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Armstrong, S.N., Smart, C.K.: Quantitative stochastic homogenization of convex integral functionals. Ann. Sci. Éc. Norm. Supér. (4) 49(2), 423–481 (2016)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Bakry, D.: L’hypercontractivité et son utilisation en théorie des semigroupes. In: Lectures on Probability Theory (Saint-Flour., 1992), Volume 1581 of Lecture Notes in Mathematics, pp. 1–114. Springer, Berlin (1994)

  9. 9.

    Bella, P., Fehrman, B., Fischer, J., Otto, F.: Stochastic homogenization of linear elliptic equations: higher-order error estimates in weak norms via second-order correctors. SIAM J. Math. Anal. 49(6), 4658–4703 (2017)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Bella, P., Giunti, A., Otto, F.: Quantitative stochastic homogenization: local control of homogenization error through corrector. In: Mathematics and Materials, Volume 23 of IAS/Park City Mathematics Series, pp. 301–327. American Mathematical Society, Providence (2017)

  11. 11.

    Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures, Volume 5 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam (1978)

    MATH  Google Scholar 

  12. 12.

    Bourgain, J.: On a homogenization problem. J. Stat. Phys. 172(2), 314–320 (2018)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Caffarelli, L.A., Peral, I.: On \(W^{1, p}\) estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51(1), 1–21 (1998)

    Article  Google Scholar 

  14. 14.

    Chatterjee, S.: Fluctuations of eigenvalues and second order Poincaré inequalities. Probab. Theory Relat. Fields 143(1–2), 1–40 (2009)

    Article  Google Scholar 

  15. 15.

    Chernoff, H.: A note on an inequality involving the normal distribution. Ann. Probab. 9(3), 533–535 (1981)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Duerinckx, M., Fischer, J., Gloria, A.: Scaling limit of the homogenization commutator for Gaussian coefficient fields. Preprint. arXiv:1910.04088

  17. 17.

    Duerinckx, M., Gloria, A., Lemm, M.: A remark on a surprising result by Bourgain in homogenization. Commun. Partial Differ. Equ. 44(12), 1345–1357 (2019)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Duerinckx, M., Gloria, A., Otto, F.: Robustness of the pathwise structure of fluctuations in stochastic homogenization. Preprint. arXiv:1807.11781

  19. 19.

    Duerinckx, M., Gloria, A., Otto, F.: The structure of fluctuations in stochastic homogenization. Preprint. arXiv:1602.01717

  20. 20.

    Gloria, A., Neukamm, S., Otto, F.: Quantitative estimates in stochastic homogenization for correlated coefficient fields. Preprint. arXiv:1910.05530

  21. 21.

    Gloria, A., Neukamm, S., Otto, F.: A regularity theory for random elliptic operators. Preprint. arXiv:1409.2678

  22. 22.

    Gloria, A., Neukamm, S., Otto, F.: An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations. M2AN Math. Model. Numer. Anal. 48(2), 325–346 (2014)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Gloria, A., Otto, F.: The corrector in stochastic homogenization: optimal rates, stochastic integrability, and fluctuations. Preprint. arXiv:1510.08290

  24. 24.

    Gu, Y.: High order correctors and two-scale expansions in stochastic homogenization. Probab. Theory Relat. Fields 169(3–4), 1221–1259 (2017)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Gu, Y., Mourrat, J.-C.: Scaling limit of fluctuations in stochastic homogenization. Multiscale Model. Simul. 14(1), 452–481 (2016)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Helffer, B., Sjöstrand, J.: On the correlation for Kac-like models in the convex case. J. Stat. Phys. 74(1–2), 349–409 (1994)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Article  Google Scholar 

  28. 28.

    Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. Lond. A 326, 131–146 (1972)

    Article  Google Scholar 

  29. 29.

    Houdré, C., Pérez-Abreu, V.: Covariance identities and inequalities for functionals on Wiener and Poisson spaces. Ann. Probab. 23(1), 400–419 (1995)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Jikov, V.V., Kozlov, S.M., Oleĭnik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994). Translated from Russian by G. A. Iosif’yan

  31. 31.

    Josien, M., Otto, F.: Introduction to stochastic homogenization: oscillations and fluctuations. In preparation (2019)

  32. 32.

    Kamotski, V., Matthies, K., Smyshlyaev, V.P.: Exponential homogenization of linear second order elliptic PDEs with periodic coefficients. SIAM J. Math. Anal. 38(5), 1565–1587 (2006/07)

  33. 33.

    Kim, J., Lemm, M.: On the averaged Green’s function of an elliptic equation with random coefficients. Preprint. arXiv:1804.10260

  34. 34.

    Kozlov, S.M.: The averaging of random operators. Mat. Sb. (N.S.) 109(151)(2):188–202, 327 (1979)

  35. 35.

    Ledoux, M., Nourdin, I., Peccati, G.: Stein’s method, logarithmic Sobolev and transport inequalities. Geom. Funct. Anal. 25(1), 256–306 (2015)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Malliavin, P.: Stochastic Analysis, Volume 313 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1997)

    Google Scholar 

  37. 37.

    Marahrens, D., Otto, F.: Annealed estimates on the Green’s function. Probab. Theory Relat. Fields 163(3–4), 527–573 (2015)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Mourrat, J.-C., Otto, F.: Correlation structure of the corrector in stochastic homogenization. Ann. Probab. 44(5), 3207–3233 (2016)

    MathSciNet  Article  Google Scholar 

  39. 39.

    Murat, F., Tartar, L.: \(H\)-convergence. In: Topics in the Mathematical Modelling of Composite Materials, Volume 31 of Progress Nonlinear Differential Equations Applications, pp. 21–43. Birkhäuser, Boston (1997)

  40. 40.

    Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Nourdin, I., Peccati, G.: Stein’s method on Wiener chaos. Probab. Theory Relat. Fields 145(1–2), 75–118 (2009)

    MathSciNet  Article  Google Scholar 

  42. 42.

    Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus. From Stein’s Method to Universality, Volume 192 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2012)

  43. 43.

    Nourdin, I., Peccati, G., Reinert, G.: Second order Poincaré inequalities and CLTs on Wiener space. J. Funct. Anal. 257(2), 593–609 (2009)

    MathSciNet  Article  Google Scholar 

  44. 44.

    Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  45. 45.

    Papanicolaou, G.C., Varadhan, S.R.S.: Boundary value problems with rapidly oscillating random coefficients. In: Random Fields, Vol. I, II (Esztergom, 1979), Volume 27 of Colloq. Math. Soc. János Bolyai, pp. 835–873. North-Holland, Amsterdam (1981)

  46. 46.

    Peccati, G., Reitzner, M. (eds.): Stochastic Analysis for Poisson Point Processes, Volume 7 of Bocconi & Springer Series. Bocconi University Press, Springer, Berlin (2016)

  47. 47.

    Pouchon, T.: Effective models and numerical homogenization methods for long time wave propagation in heterogeneous media. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2017)

  48. 48.

    Shen, Z.: The \(L^p\) boundary value problems on Lipschitz domains. Adv. Math. 216, 212–254 (2007)

    MathSciNet  Article  Google Scholar 

  49. 49.

    Shen, Z.: The Calderón-Zygmund lemma revisited. In: Lectures on the Analysis of Nonlinear Partial Differential Equations. Part 2, Volume 2 of Morningside Lecture Notes in Mathematics, pp. 203–224. International Press, Somerville (2012)

  50. 50.

    Sjöstrand, J.: Correlation asymptotics and Witten Laplacians. Algebra Anal. 8(1), 160–191 (1996)

    MathSciNet  MATH  Google Scholar 

  51. 51.

    Tran, T.-H., Monchiet, V., Bonnet, G.: A micromechanics-based approach for the derivation of constitutive elastic coefficients of strain-gradient media. Int. J. Solids Struct. 49(5), 783–792 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The work of MD was supported by F.R.S.-FNRS and by the CNRS-Momentum program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mitia Duerinckx.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. More Malliavin calculus

Appendix A. More Malliavin calculus

In this appendix, we include for completeness a short, essentially self-contained proof of Proposition 4.1.

Proof of Proposition 4.1

We split the proof into four steps.

Step 1. Proof of (i).

In terms of the Ornstein–Uhlenbeck semigroup \(e^{-t\mathcal {L}}\) (e.g. [44, Section 1.4]), we may write

$$\begin{aligned} {\mathrm{Var}}\left[ X\right] =-\int _0^\infty \partial _t\mathbb {E}\left[ (e^{-t\mathcal {L}}X)^2 \right] \,dt \end{aligned}$$

where Mehler’s formula (e.g. [44, (1.67)]) indeed ensures that \(\mathbb {E}\left[ (e^{-t\mathcal {L}}X)^2 \right] \rightarrow \mathbb {E}\left[ X \right] ^2\) as \(t\uparrow \infty \). Computing the derivative in t yields

$$\begin{aligned} {\mathrm{Var}}\left[ X\right] \,=\,2\int _0^\infty \mathbb {E}\left[ (e^{-t\mathcal {L}}X)\mathcal {L}(e^{-t\mathcal {L}}X) \right] \,dt\,=\,2\int _0^\infty \mathbb {E}\left[ \Vert De^{-t\mathcal {L}}X\Vert _{\mathfrak {H}}^2 \right] \,dt, \end{aligned}$$

hence, appealing to the commutation relation (4.5) in the form \(De^{-t\mathcal {L}}=e^{-t}e^{-t\mathcal {L}}D\),

$$\begin{aligned} {\mathrm{Var}}\left[ X\right] \,=\,2\int _0^\infty e^{-2t}\,\mathbb {E}\left[ \Vert e^{-t\mathcal {L}}DX\Vert _{\mathfrak {H}}^2 \right] \,dt, \end{aligned}$$

and the positivity of \(\mathcal {L}\) leads to the conclusion,

$$\begin{aligned} {\mathrm{Var}}\left[ X\right] \,\le \,2\int _0^\infty e^{-2t}\,\mathbb {E}\left[ \Vert DX\Vert _{\mathfrak {H}}^2 \right] \,dt\,=\,\mathbb {E}\left[ \Vert DX\Vert _{\mathfrak {H}}^2 \right] . \end{aligned}$$

Step 2. Proof of (ii).

Let \(X,Y\in \mathbb {D}^{1,2}\) with \(\mathbb {E}\left[ X \right] =\mathbb {E}\left[ Y \right] =0\). First note that the Poincaré inequality (i) implies that the restriction of \(\mathcal {L}\) to \({\text {L}}^2(\Omega )/{\mathbb {C}}:=\{U\in {\text {L}}^2(\Omega ):\mathbb {E}\left[ U \right] =0\}\) is invertible. In particular, there exists \(Z\in {\text {L}}^2(\Omega )\) such that \(Y=\mathcal {L}Z\). By definition of the adjoint \(D^*\) (cf. (4.4)), we then find

$$\begin{aligned} \mathbb {E}\left[ XY \right] =\mathbb {E}\left[ X\mathcal {L}Z \right] =\mathbb {E}\left[ XD^* D Z \right] =\mathbb {E}\left[ \langle DX,DZ\rangle _{{\mathfrak {H}}} \right] . \end{aligned}$$
(A.1)

Appealing to the commutator relation (4.5) in the form \(DY=D\mathcal {L}Z=(1+\mathcal {L})DZ\), we conclude

$$\begin{aligned} \mathbb {E}\left[ XY \right] =\mathbb {E}\left[ \langle DX,(1+\mathcal {L})^{-1}DY\rangle _{{\mathfrak {H}}} \right] . \end{aligned}$$

Step 3. Proof of (iii).

Similarly as in Step 1, in terms of the Ornstein–Uhlenbeck semigroup \(e^{-t\mathcal {L}}\), we may write

$$\begin{aligned} {\mathrm{Ent}}\!\left[ X^2\right]= & {} -\int _0^\infty \partial _t\,\mathbb {E}\left[ (e^{-t\mathcal {L}}X^2)\log (e^{-t\mathcal {L}}X^2) \right] \,dt\\= & {} \int _0^\infty \mathbb {E}\left[ (\mathcal {L}e^{-t\mathcal {L}}X^2)\log (e^{-t\mathcal {L}}X^2) \right] \,dt \,=\,\int _0^\infty \mathbb {E}\left[ \frac{\Vert De^{-t\mathcal {L}}X^2\Vert _{{\mathfrak {H}}}^2}{e^{-t\mathcal {L}}X^2} \right] \,dt, \end{aligned}$$

hence, by the commutation relation (4.5) in the form \(De^{-t\mathcal {L}}=e^{-t}e^{-t\mathcal {L}}D\),

$$\begin{aligned} {\mathrm{Ent}}\!\left[ X^2\right]= & {} \int _0^\infty e^{-2t}\,\mathbb {E}\left[ \frac{\Vert e^{-t\mathcal {L}}DX^2\Vert _{{\mathfrak {H}}}^2}{e^{-t\mathcal {L}}X^2} \right] \,dt. \end{aligned}$$

Appealing to Mehler’s formula for the Ornstein–Uhlenbeck semigroup \(e^{-t\mathcal {L}}\) (e.g. [44, (1.67)]), the Cauchy–Schwarz inequality leads to

$$\begin{aligned} \Vert e^{-t\mathcal {L}}DX^2\Vert _{{\mathfrak {H}}}^2\,=\,4\,\Vert e^{-t\mathcal {L}}(XDX)\Vert _{{\mathfrak {H}}}^2\,\le \, 4\,\big (e^{-t\mathcal {L}}X^2\big )\big (e^{-t\mathcal {L}}\Vert DX\Vert _{{\mathfrak {H}}}^2\big ), \end{aligned}$$

so that the above becomes

$$\begin{aligned} {\mathrm{Ent}}\!\left[ X^2\right] \,\le \,4\int _0^\infty e^{-2t}\,\mathbb {E}\left[ e^{-t\mathcal {L}}\Vert DX\Vert _{{\mathfrak {H}}}^2 \right] \,dt \,\le \,2\,\mathbb {E}\left[ \Vert DX\Vert _{\mathfrak {H}}^2 \right] , \end{aligned}$$

which proves the logarithmic Sobolev inequality. Next, higher integrability is deduced by integration as e.g. in [2, Theorem 3.4]: we write

$$\begin{aligned} \mathbb {E}\left[ |X|^{2p} \right] ^\frac{1}{p}-\mathbb {E}\left[ X^2 \right] =\int _1^p\frac{1}{q^2}\mathbb {E}\left[ |X|^{2q} \right] ^{\frac{1}{q}-1}{\mathrm{Ent}}\!\left[ |X|^{2q}\right] dq, \end{aligned}$$

so that the logarithmic Sobolev inequality implies

$$\begin{aligned} \mathbb {E}\left[ |X|^{2p} \right] ^\frac{1}{p}-\mathbb {E}\left[ X^2 \right]\le & {} 2\int _1^p\frac{1}{q^2}\mathbb {E}\left[ |X|^{2q} \right] ^{\frac{1}{q}-1}\mathbb {E}\left[ \Vert D|X|^q\Vert _{\mathfrak {H}}^2 \right] dq\\= & {} 2\int _1^p\mathbb {E}\left[ |X|^{2q} \right] ^{\frac{1}{q}-1}\mathbb {E}\left[ |X|^{2(q-1)}\Vert DX\Vert _{\mathfrak {H}}^2 \right] dq\\\le & {} 2\int _1^p\mathbb {E}\left[ \Vert DX\Vert _{\mathfrak {H}}^{2q} \right] ^\frac{1}{q}dq~\le ~2p\,\mathbb {E}\left[ \Vert DX\Vert _{\mathfrak {H}}^{2p} \right] ^\frac{1}{p}, \end{aligned}$$

and the conclusion follows from the Poincaré inequality (i).

Step 4. Proof of (iv).

Let \(X\in {\text {L}}^2(\Omega )\) with \(\mathbb {E}\left[ X \right] =0\) and \({\mathrm{Var}}\left[ X\right] =1\). For \(h\in {\text {L}}^\infty ({\mathbb {R}})\), we define its Stein transform \(S_h\) as the solution of Stein’s equation

$$\begin{aligned} S_h'(x)-xS_h(x)=h(x)-\mathbb {E}\left[ h({\mathcal {N}}) \right] . \end{aligned}$$

As in Step 2, there exists \(Z\in {\text {L}}^2(\Omega )\) such that \(Y=\mathcal {L}Z\). We then compute

$$\begin{aligned} \mathbb {E}\left[ h(X) \right] -\mathbb {E}\left[ h({\mathcal {N}}) \right] =\mathbb {E}\left[ S_h'(X)-XS_h(X) \right] =\mathbb {E}\left[ S_h'(X)-(D^*DZ)S_h(X) \right] , \end{aligned}$$

and hence, integrating by parts and using (A.1) in the form \(\mathbb {E}\left[ \langle DZ,DX\rangle _{\mathfrak {H}} \right] ={\mathrm{Var}}\left[ X\right] =1\),

$$\begin{aligned} \big |\mathbb {E}\left[ h(X) \right] -\mathbb {E}\left[ h({\mathcal {N}}) \right] \!\big |= & {} \big |\mathbb {E}\left[ S_h'(X)\big (1-\langle DZ,DX\rangle _{\mathfrak {H}}\big ) \right] \!\big |\nonumber \\\le & {} \Vert S_h'\Vert _{{\text {L}}^\infty }{\mathrm{Var}}\left[ \langle DZ,DX\rangle _{\mathfrak {H}}\right] ^\frac{1}{2}. \end{aligned}$$
(A.2)

Noting that \(\Vert S_h'\Vert _{{\text {L}}^\infty }\le 2\Vert h\Vert _{{\text {L}}^\infty }\) (e.g. [42, Theorem 3.3.1]) and taking the supremum over all \(h\in {\text {L}}^\infty ({\mathbb {R}})\), we deduce

$$\begin{aligned} {\text {d}}_{{\text {TV}}}\left( {X};{{\mathcal {N}}}\right) \,\le \,2\,{\mathrm{Var}}\left[ \langle DZ,DX\rangle _{\mathfrak {H}}\right] ^\frac{1}{2}. \end{aligned}$$

Noting that for h Lipschitz-continuous there holds \(\Vert S_h'\Vert _{{\text {L}}^\infty }\le \sqrt{\frac{2}{\pi }}\Vert h'\Vert _{{\text {L}}^\infty }\) (e.g. [42, Proposition 3.5.1]), we can deduce a similar bound on the 1-Wasserstein distance. The corresponding bound on the 2-Wasserstein distance takes the form

$$\begin{aligned} W_2(X;{\mathcal {N}})\le \mathbb {E}\left[ |\langle DZ,DX\rangle _{\mathfrak {H}}-1|^2 \right] ^\frac{1}{2}={\mathrm{Var}}\left[ \langle DZ,DX\rangle _{\mathfrak {H}}\right] ^\frac{1}{2}; \end{aligned}$$

its proof is of a different nature and is based on an optimal transport argument in density space (cf. [35, Proposition 3.1]).

It remains to estimate the variance \({\mathrm{Var}}\left[ \langle DZ,DX\rangle _{\mathfrak {H}}\right] \). For that purpose, we apply the first-order Poincaré inequality (i) in the form

$$\begin{aligned} {\mathrm{Var}}\left[ \langle DZ,DX\rangle _{\mathfrak {H}}\right]\le & {} \mathbb {E}\left[ \Vert \langle D^2Z,DX\rangle _{\mathfrak {H}}+\langle DZ,D^2X\rangle _{\mathfrak {H}}\Vert _{{\mathfrak {H}}}^2 \right] . \end{aligned}$$

Noting that the commutation relation (4.5) leads to \(DX=(1+\mathcal {L})DZ\) and \(D^2X=(2+\mathcal {L})D^2Z\), we deduce

$$\begin{aligned} {\mathrm{Var}}\left[ \langle DZ,DX\rangle _{\mathfrak {H}}\right]\le & {} \mathbb {E}\left[ \big \Vert \big \langle D^2X,\big ((1+\mathcal {L})^{-1}+(2+\mathcal {L})^{-1}\big )DX\big \rangle _{\mathfrak {H}}\big \Vert _{{\mathfrak {H}}}^2 \right] \\\le & {} \mathbb {E}\left[ \Vert D^2X\Vert _{{\text {op}}}^4 \right] ^\frac{1}{4}\mathbb {E}\left[ \big \Vert \big ((1+\mathcal {L})^{-1}+(2+\mathcal {L})^{-1}\big )DX\big \Vert _{\mathfrak {H}}^4 \right] ^\frac{1}{4}, \end{aligned}$$

Noting as in [38, Proposition 3.2] that \((1+\mathcal {L})^{-1}\) and \((2+\mathcal {L})^{-1}\) have operator norms on \({\text {L}}^4(\Omega )\) bounded by 1 and \(\frac{1}{2}\), respectively, the conclusion follows. \(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duerinckx, M., Otto, F. Higher-order pathwise theory of fluctuations in stochastic homogenization. Stoch PDE: Anal Comp 8, 625–692 (2020). https://doi.org/10.1007/s40072-019-00156-4

Download citation

Keywords

  • Stochastic homogenization
  • Higher-order homogenization
  • Linear elliptic equation
  • Fluctuations
  • Homogenization commutator