Abstract
We prove an invariance principle for the two-dimensional lattice parabolic Anderson model with small potential. As applications we deduce a Donsker type convergence result for a discrete random polymer measure, as well as a universality result for the spectrum of discrete random Schrödinger operators on large boxes with small potentials. Our proof is based on paracontrolled distributions and some basic results for multiple stochastic integrals of discrete martingales.
This is a preview of subscription content, access via your institution.
Notes
But not for \(d\ge 4\) because in that case the scaling factor \(\varepsilon ^{2 - d/2}\) vanishes or even blows up, so the intermittency effect will be very strong. This corresponds to the fact that in the language of Hairer [24] the continuous parabolic Anderson model is locally subcritical in dimensions 1, 2, 3, it is critical in dimension 4, and supercritical in dimensions \(d > 4\).
References
Alberts, T., Khanin, K., Quastel, J.: The intermediate disorder regime for directed polymers in dimension \(1+ 1\). Ann. Probab. 42(3), 1212–1256 (2014)
Allez, R., Chouk, K.: The continuous Anderson Hamiltonian in dimension two (2015), preprint arXiv:1511.02718
Bahouri, H., Chemin, J.-Y.: Danchin, Raphael, Fourier analysis and nonlinear partial differential equations. Springer, Berlin (2011)
Bailleul, I., Bernicot, F.: Heat semigroup and singular PDEs. J. Funct. Anal. 270(9), 3344–3452 (2016)
Bailleul, Ismaël, Bernicot, F., Frey, D.: Higher order paracontrolled calculus and 3d-PAM equation, (2015), arXiv preprint arXiv:1506.08773
Biskup, M., Fukushima, R., König, W.: Eigenvalue fluctuations for lattice Anderson Hamiltonians. SIAM J. Math. Anal. 48(4), 2674–2700 (2016)
Bony, J.-M.: Calcul symbolique et propagation des singularites pour les équations aux dérivées partielles non linéaires. Ann. Sci. Éc. Norm. Supér. (4) 14, 209–246 (1981)
Brown, B.M.: Martingale central limit theorems. Ann. Math. Statist. 42(1), 59–66 (1971)
Bruned, Y.: Singular KPZ type equations, Ph.D. Thesis (2015)
Cannizzaro, G., Chouk, K.: Multidimensional SDEs with singular drift and universal construction of the polymer measure with white noise potential (2015), arXiv preprint arXiv:1501.04751
Caravenna, F., Sun, R., Zygouras, N.: Polynomial chaos and scaling limits of disordered systems (2013), arXiv preprint arXiv:1312.3357
Carmona, R., Molchanov, S.A.: Parabolic Anderson problem and intermittency, vol. 518. American Mathematical Soc, Providence (1994)
Catellier, R., Chouk, K.: Paracontrolled distributions and the 3-dimensional stochastic quantization equation (2013), arXiv preprint arXiv:1310.6869
Chandra, A., Shen, H.: Glauber dynamics of 2D Kac–Blume–Capel model and their stochastic PDE limits (2016), arXiv preprint arXiv:1608.06556
Chandra, A., Shen, H.: Moment bounds for SPDEs with non-Gaussian fields and application to the Wong-Zakai problem (2016), arXiv preprint arXiv:1605.05683
Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, Hoboken (2005)
Friz, P.K., Hairer, Martin: A Course on Rough Paths: With an Introduction to Regularity Structures. Springer, Berlin (2014)
Gubinelli, M.: Controlling rough paths. J. Funct. Anal. 216(1), 86–140 (2004)
Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled Distributions and Singular PDEs, p. e6. Cambridge University Press, Cambridge (2015)
Gubinelli, M., Perkowski, N.: KPZ reloaded (2015), arXiv preprint arXiv:1508.03877
Gubinelli, M., Perkowski, N.: Lectures on singular stochastic PDEs, Ensaois Mat. 29 (2015)
Hairer, M.: Rough stochastic PDEs. Comm. Pure Appl. Math. 64(11), 1547–1585 (2011)
Hairer, M.: Solving the KPZ equation. Ann. Math. 178(2), 559–664 (2013)
Hairer, M.: A theory of regularity structures. Invent. Math. (2014). doi:10.1007/s00222-014-0505-4
Hairer, M.: The motion of a random string (2016), arXiv preprint arXiv:1605.02192
Hairer, M., Labbé, C.: Multiplicative stochastic heat equations on the whole space (2015), arXiv preprint arXiv:1504.07162
Hairer, M., Maas, J.: A spatial version of the Itô-Stratonovich correction. Ann. Probab. 40(4), 1675–1714 (2012)
Hairer, M., Maas, J., Weber, H.: Approximating rough stochastic PDEs. Comm. Pure Appl. Math. 67(5), 776–870 (2014)
Hairer, M., Matetski, K.: Discretisations of rough stochastic PDEs (2015), arXiv preprint arXiv:1511.06937
Hairer, M., Pardoux, É.: A Wong–Zakai theorem for stochastic PDEs. J. Math. Soc. Jpn. 67(4), 1551–1604 (2015)
Hairer, M., Quastel, J.: A class of growth models rescaling to KPZ (2015), arXiv preprint arXiv:1512.07845
Hairer, M., Shen, H.: A central limit theorem for the KPZ equation (2015), arXiv preprint arXiv:1507.01237
Hairer, M., Shen, H.: The dynamical sine-Gordon model. Comm. Math. Phys. 341(3), 933–989 (2016)
Hairer, M., Xu, W.: Large scale behaviour of 3D phase coexistence models (2016), arXiv preprint arXiv:1601.05138
Hoshino, M.: KPZ equation with fractional derivatives of white noise (2016), arXiv preprint arXiv:1602.04570
Hoshino, M.: Paracontrolled calculus and Funaki–Quastel approximation for the KPZ equation (2016), arXiv preprint arXiv:1605.02624
Janson, Svante: Gaussian Hilbert spaces, Cambridge Tracts in Mathematics, vol. 129. Cambridge University Press, Cambridge (1997)
König, W.: The Parabolic Anderson Model. Random Walk in Random Potential. Birkhäuser, Basel (2016)
König, W., Schmidt, S.: The parabolic Anderson model with acceleration and deceleration. In: Deuschel, J.D., Gentz, B., König, W., von Renesse, M., Scheutzow, M., Schmock, U. (eds.) Probability in Complex Physical Systems. Springer Proceedings in Mathematics, vol. 11. Springer, Berlin, Heidelberg (2012)
Kupiainen, A.: Renormalization group and stochastic PDEs. Annales Henri Poincaré 17(3), 497–535 (2016)
Kupiainen, A., Marcozzi, M.: Renormalization of generalized KPZ equation (2016), arXiv preprint arXiv:1604.08712
Merkl, F., Wüthrich, M.V.: Annealed survival asymptotics for Brownian motion in a scaled Poissonian potential. Stochastic processes and their applications 96(2), 191–211 (2001)
Merkl, F., Wüthrich, M.V.: Phase transition of the principal Dirichlet eigenvalue in a scaled Poissonian potential. Probab. Theory Relat. Fields 119(4), 475–507 (2001)
Merkl, F., Wüthrich, M.V.: Infinite volume asymptotics of the ground state energy in a scaled Poissonian potential. Annales de l’IHP Probabilités et statistiques 38, 253–284 (2002)
Mossel, E., O’Donnell, R., Oleszkiewicz, K.: Noise stability of functions with low influences: invariance and optimality. Ann. Math. 171, 295–341 (2010)
Mourrat, J.-C., Weber, H.: Convergence of the two-dimensional dynamic Ising-Kac model to \(\phi ^4_2\) (2014), arXiv preprint arXiv:1410.1179
Prömel, D.J., Trabs, M.: Rough differential equations driven by signals in Besov spaces. J. Differ. Eq. 260(6), 5202–5249 (2016)
Schmidt, S.: Das parabolische Anderson–Modell mit Be- und Entschleunigung. Universität Leipzig, Leipzig (2010)
Shen, H., Xu, W.: Weak universality of dynamical \(\phi ^4_3 \): non-Gaussian noise, (2016), arXiv preprint arXiv:1601.05724
Zhu, R., Zhu, X.: Approximating three-dimensional Navier–Stokes equations driven by space-time white noise (2014), arXiv preprint arXiv:1409.4864
Zhu, R., Zhu, X.: Lattice approximation to the dynamical \(\phi _3^4\) model (2015) arXiv preprint arXiv:1508.05613
Author information
Authors and Affiliations
Corresponding author
Additional information
We are very grateful to Massimiliano Gubinelli for countless discussions on the subject matter and in particular for suggesting the random operator approach that helped resolve the technically most challenging problem of the paper. We would also like to thank Hao Shen and Hendrik Weber for helpful discussions and suggestions, Jörg Martin, Rongchan Zhu, and Xiangchan Zhu for pointing out small mistakes in an earlier version of the paper, and the anonymous referees for their careful reading and for their corrections and suggestions which helped to improve the presentation.
Nicolas Perkowski: Financial support by the DFG via Research Unit FOR 2402 is gratefully acknowledged.
A criterion for the weak convergence of Markov processes
A criterion for the weak convergence of Markov processes
Lemma 8.1
([16], Theorem 2.11 in Chap. 4) Let E and \((E_N)_{N \in \mathbb {N}}\) be metric spaces such that E is compact and separable and assume that for all N we are given a measurable map \(\psi _N :E_N \rightarrow E\) and a semigroup \((P_N(t))_{t \in [0,T]}\) of a Markov process \(Y_N\) on \(E_N\), such that \(X_N = \psi _N (Y_N)\) has sample paths in D([0, T], E). Assume also that there exists a Feller semigroup \((P(t))_{t \in [0,T]}\) such that
for every \(f\in C(E, \mathbb {R})\), where \(\pi _N :L^{\infty }(E)\rightarrow L^{\infty }(E_N)\) is defined by the relation \(\pi _N f (x) =f(\psi _N(x))\), \(x \in E_N\). Then if \(X_N(0)\) has a limiting probability distribution \(\nu \) on E, the process \((X_N)\) converges in distribution in D([0, T], E) to the Markov process X starting at \(\nu \) with semigroup \((P(t))_{t \in [0,T]}\).
Rights and permissions
About this article
Cite this article
Chouk, K., Gairing, J. & Perkowski, N. An invariance principle for the two-dimensional parabolic Anderson model with small potential. Stoch PDE: Anal Comp 5, 520–558 (2017). https://doi.org/10.1007/s40072-017-0096-3
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40072-017-0096-3
Keywords
- Parabolic Anderson model
- Random polymer measure
- Random Schrödinger operator
- Invariance principle
- Paracontrolled distributions