Barenblatt, G.I.: On some unsteady motions of a liquid and gas in a porous medium. Akad. Nauk. SSSR Prikl. Mat. Meh. 16, 67–78 (1952)
MathSciNet
Google Scholar
Belaribi, N., Cuvelier, F., Russo, F.: A probabilistic algorithm approximating solutions of a singular PDE of porous media type. Monte Carlo Methods Appl. 17(4), 317–369 (2011)
MathSciNet
Article
MATH
Google Scholar
Belaribi, N., Cuvelier, F., Russo, F.: Probabilistic and deterministic algorithms for space multidimensional irregular porous media equation. SPDEs Anal. Comput. 1(1), 3–62 (2013)
MathSciNet
MATH
Google Scholar
Ben Alaya, M., Jourdain, B.: Probabilistic approximation of a nonlinear parabolic equation occurring in rheology. J. Appl. Probab. 44(2), 528–546 (2007)
MathSciNet
Article
MATH
Google Scholar
Bertsekas, D.P., Shreve, S.E.: Stochastic optimal control. In: Mathematics in Science and Engineering, vol. 139. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, (1978) (The discrete time case)
Bossy, M., Jourdain, B.: Rate of convergence of a particle method for the solution of a 1D viscous scalar conservation law in a bounded interval. Ann. Probab. 30(4), 1797–1832 (2002)
MathSciNet
Article
MATH
Google Scholar
Bossy, M., Talay, D.: A stochastic particle method for some one-dimensional nonlinear p.d.e. Math. Comput. Simul., 38(1–3):43–50 (1995) (Probabilités numériques (Paris, 1992))
Bossy, M., Talay, D.: A stochastic particle method for the McKean–Vlasov and the Burgers equation. Math. Comput. 66(217), 157–192 (1997)
MathSciNet
Article
MATH
Google Scholar
Bouchard, B., Touzi, N.: Discrete-time approximation and Monte Carlo simulation of backward stochastic differential equations. Stoch. Process. Appl. 111, 175–206 (2004)
MathSciNet
Article
MATH
Google Scholar
Cheridito, P., Soner, H.M., Touzi, N., Victoir, N.: Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs. Commun. Pure Appl. Math. 60(7), 1081–1110 (2007)
MathSciNet
Article
MATH
Google Scholar
Crauel, H.: Random probability measures on Polish spaces. In: Stochastics Monographs, vol. 11. Taylor & Francis, London (2002)
Del Moral, P.: Feynman-Kac formulae: genealogical and interacting particle systems with applications. In: Probability and Its Applications (New York). Springer-Verlag, New York (2004)
Del Moral, P.: Mean field simulation for Monte Carlo integration. In: Monographs on Statistics and Applied Probability, vol. 126. CRC Press, Boca Raton (2013)
Gobet, E., Lemor, J.-P., Warin, X.: A regression-based Monte Carlo method to solve backward stochastic differential equations. Ann. Appl. Probab. 15(3), 2172–2202 (2005)
MathSciNet
Article
MATH
Google Scholar
Henry-Labordère, P.: Counterparty risk valuation: a marked branching diffusion approach. doi:10.2139/ssrn.1995503 or http://ssrn.com/abstract=1995503 (2012)
Henry-Labordère, P., Tan, X., Touzi, N.: A numerical algorithm for a class of BSDEs via the branching process. Stoch. Process. Appl. 124(2), 1112–1140 (2014)
MathSciNet
Article
MATH
Google Scholar
Jourdain, B., Méléard, S.: Propagation of chaos and fluctuations for a moderate model with smooth initial data. Ann. Inst. H. Poincaré Probab. Statist. 34(6), 727–766 (1998)
MathSciNet
Article
MATH
Google Scholar
Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus. In: Graduate Texts in Mathematics, vol. 113, 2nd edn. Springer-Verlag, New York (1991)
Kohatsu-Higa, A., Ogawa, S.: Weak rate of convergence for an Euler scheme of nonlinear SDE’s. Monte Carlo Methods Appl. 3(4), 327–345 (1997)
MathSciNet
Article
MATH
Google Scholar
Le Cavil, A., Oudjane, N., Russo, F.: Probabilistic representation of a class of non conservative nonlinear partial differential equations. https://hal.archives-ouvertes.fr/hal-01241701 (2015)
McKean, H.P., Jr.: Propagation of chaos for a class of non-linear parabolic equations. In: Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967). Air Force Office Sci. Res., Arlington, pp. 41–57 (1967)
Pardoux, E.: Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order. In: Stochastic Analysis and Related Topics, VI (Geilo, 1996), vol. 42 of Progr. Probab. Birkhäuser Boston, Boston, MA, pp. 79–127 (1998)
Pardoux, É., Peng, S.G.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55–61 (1990)
MathSciNet
Article
MATH
Google Scholar
Pardoux, E., Raşcanu, A.: Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, vol. 69. Springer, Berlin (2014)
MATH
Google Scholar
Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes, and Martingales, vol. 2. Cambridge Mathematical Library. Cambridge University Press, Cambridge, (2000). (Itôcalculus, Reprint of the second (1994) edition)
Silverman, B.W.: Density Estimation forStatistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman & Hall, London (1986)
Book
Google Scholar
Sznitman, A-S.: Topics in propagation of chaos. In: École d’Été de Probabilités de Saint-Flour XIX—1989. Lecture Notes in Mathematics, vol. 1464. Springer, Berlin, pp. 165–251 (1991)
Talay, D.: Probabilistic numerical methods for partial differential equations: elements of analysis. In: Probabilistic Models for Nonlinear Partial Differential Equations (Montecatini Terme, 1995). Lecture Notes in Mathematics, vol. 1627. Springer, Berlin, pp. 148–196 (1996)