Skip to main content

Managing an automated clinical laboratory: optimization challenges and opportunities

Abstract

In this paper, we analyze and discuss the optimization challenges and opportunities raised by the decision of building an automated clinical laboratory in a hospital unit. We first describe the general decision setting from a strategic, tactical and operational perspective. We then focus on the analysis of a practical case, i.e., the Central Laboratory of a large urban academic teaching hospital in the North of Italy, the ‘Spedali Civili’ in Brescia. We will describe the present situation and the research opportunities related to the study of possible improvements of the management of the laboratory.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abe TK, Beamon BM, Storch RL, Agus J (2016) Operations research applications in hospital operations: Part i. IIIE Trans Healthc Syst Eng 6:42–54

    Article  Google Scholar 

  2. Abe TK, Beamon BM, Storch RL, Agus J (2016) Operations research applications in hospital operations: Part ii. IIIE Trans Healthc Syst Eng 6:96–109

    Article  Google Scholar 

  3. Abe TK, Beamon BM, Storch RL, Agus J (2016) Operations research applications in hospital operations: Part iii. IIIE Trans Healthc Syst Eng 6:175–191

    Article  Google Scholar 

  4. Allinson JL, Blick KE, Cohen L, Higton D, Li M (2013) Ask the experts. automation: Part i. Bioanalysis 5:1953–1962

    Article  Google Scholar 

  5. Angeletti S, De Cesaris M, Hart JG, Urbano M, Vitali MA, Fragliasso F, Dicuonzo G (2015) Laboratory automation and intra-laboratory turnaround time: experience at the university hospital campus bio-medico of rome. J Lab Autom 20:652–658

    Article  Google Scholar 

  6. Archetti C, Montanelli A, Finazzi D, Caimi L, Garrafa E (2017) Clinical laboratory automation: a case study. J Public Health Res 6:31–36

    Article  Google Scholar 

  7. Brailsford S, Vissers J (2011) OR in healthcare: a European perspective. Eur J Oper Res 212:223–234

    Article  Google Scholar 

  8. Caprara A, Toth P, Vigo D, Fischetti M (1998) Modeling and solving the crew rostering problem. Oper Res 46:820–830

    Article  Google Scholar 

  9. Cheng TCE, Sin CCS (1990) A state-of-the-art review of parallel-machine scheduling research. Eur J Oper Res 47:271–292

    Article  Google Scholar 

  10. Denton BT (2013) Handbook of healthcare operations management. International series in operations research and management science, vol 184. Springer, New York

    Google Scholar 

  11. Eggert AA, Bowers KL, Smulka GJ, Emmerich KA, Iwanski AL, Quam EF (1999) An overhead specimen handling system for variable workloads. J Med Syst 23:1–11

    Article  Google Scholar 

  12. Florian M, Lenstra JK, Rinnooy Kan AHG (1980) Deterministic production planning: algorithms and complexity. Manag Sci 26:669–679

    Article  Google Scholar 

  13. Hawker CD (2007) Laboratory automation: total and subtotal. Clin Lab Med 27:749–770

    Article  Google Scholar 

  14. Ialongo C, Porzio O, Giambini I, Bernardini S (2016) Total automation for the core laboratory: improving the turnaround time helps to reduce the volume of ordered STAT tests. J Lab Autom 21:451–458

    Article  Google Scholar 

  15. Langabeer JR II, Helton J (2016) Healthcare operations management: a system perspective. Jones and Bartlett Learing, Burlingotn

    Google Scholar 

  16. Lam CW, Jacob E (2012) Implementing a laboratory automation system. J Lab Autom 17:16–23

    Article  Google Scholar 

  17. Li M (2013) Automation in the bioanalytical laboratory: what is the future? Bioanalysis 5:2859–2861

    Article  Google Scholar 

  18. Luss H (1982) Operations research and capacity expansion problems: a survey. Oper Res 30:907–947

    Article  Google Scholar 

  19. Maynard A (2012) Public health and economics: a marriage of necessity. J Public Health Res 1:11–13

    Article  Google Scholar 

  20. Melanson SEF, Lindeman NI, Jarolim P (2007) Selecting automation for the clinical chemistry laboratory. Arch Pathol Lab Med 131:1063–1069

    Google Scholar 

  21. Peck-Palmer OM (2009) Total lab automation takes teamwork. MLO 41:30–35

    Google Scholar 

  22. Plebani M (2010) Laboratory diagnostics in the third millennium: where, how and why. Clin Chem Lab Med 48:901–902

    Google Scholar 

  23. Powell JH, Mustafee N (2017) Widening requirements capture with soft methods: an investigation of hybrid m&s studies in health care. J Oper Res Soc 68:1211–1222

    Article  Google Scholar 

  24. Sarkozi L, Simson E, Ramanathan L (2003) The effects of total laboratory automation on the management of a clinical chemistry laboratory. Retrospective analysis of 36 years. Clin Chim Acta 329:89–94

    Article  Google Scholar 

  25. Sasaki M, Kageoka T, Ogura K, Kataoka H, Ueta T, Sugihara S (1998) Total laboratory automation in Japan. Clin Chim Acta 278:217–227

    Article  Google Scholar 

  26. Seaberg RS, Stallone RO, Statland BE (2000) The role of total laboratory automation in a consolidated laboratory network. Clin Chem 46:751–756

    Article  Google Scholar 

  27. Sherif YS, Smith ML (1981) Optimal maintenance models for systems subject to failure—a review. Naval Res Logist Q 28:47–74

    Article  Google Scholar 

  28. Shin KH, Kim HH, Chang CL, Lee EY (2013) Economic and workflow analysis of a blood bank automated system. Ann Lab Med 33:268–273

    Article  Google Scholar 

  29. Shmoys DB, Tardos É (1993) An approximation algorithm for the generalized assignment problem. Math Program 62:461–474

    Article  Google Scholar 

  30. Tatsumi N, Okuda K, Tsuda I (1999) A new direction in automated laboratory testing in japan: five years of experience with total laboratory automation system management. Clin Chim Acta 290:93–108

    Article  Google Scholar 

  31. Xie X, Lawley MA (2015) Operations research in healthcare. Int J Prod Res 53:7173–7176

    Article  Google Scholar 

  32. Yang T, Wang T-K, Li VC, Su C-L (2014) The optimization of total laboratory automation by simulation of a pull-strategy. J Med Syst 39:162

    Article  Google Scholar 

  33. Yuan L, Ji QC (2012) Automation in new frontiers of bioanalysis: a key for quality and efficiency. Bioanalysis 4:2759–2762

    Article  Google Scholar 

  34. Zaninotto M, Plebani M (2010) The ‘hospital central laboratory’: automation, integration and clinical usefulness. Clin Chem Lab Med 48:911–917

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Claudia Archetti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Archetti, C., Speranza, M.G. & Garrafa, E. Managing an automated clinical laboratory: optimization challenges and opportunities. EURO J Decis Process 8, 41–60 (2020). https://doi.org/10.1007/s40070-019-00097-2

Download citation

Keywords

  • Clinical laboratory automation
  • Optimization
  • Scheduling