Supporting the multi-criteria decision aiding process: R and the MCDA package

Abstract

Reaching a decision when multiple, possibly conflicting, criteria are taken into account is often a difficult task. This normally requires the intervention of an analyst to aid the decision maker in following a clear methodology with respect to the steps that need to be taken, as well as the use of different algorithms and software tools. Most of these tools focus on one or a small number of algorithms, some are difficult to adapt and interface with other tools, while only a few belong to dynamic communities of contributors allowing them to expand in use and functionality. In this paper, we address these issues by proposing to use the R statistical environment and the MCDA package of decision aiding algorithms and tools. This package is meant to provide a wide range of MCDA algorithms that may be used by an analyst to tailor a decision aiding process to their needs, while the choice of R takes advantage of the yet poorly explored opportunity to interface data analysis and decision aiding. We additionally demonstrate the use of this tool on a practical application following a well-defined decision aiding process.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Baizyldayeva U, Vlasov O, Kuandykov AA, Akhmetov TB et al (2013) Multi-criteria decision support systems: comparative analysis. Middle-East J Sci Res 16(12):1725–1730

    Google Scholar 

  2. Belton V, Stewart T (2002) Multiple criteria decision analysis: an integrated approach. Springer, New York

    Google Scholar 

  3. Bisdorff R, Dias LC, Meyer P, Pirlot M, Mousseau V (2015) Evaluation and decision models with multiple criteria: case studies. International handbooks on information systems. Springer, Berlin

  4. Bogetoft P, Otto L (2015) Benchmarking-benchmark and frontier analysis using DEA and SFA. https://cran.r-project.org/package=Benchmarking

  5. Bouyssou D, Marchant T, Pirlot M, Perny P, Tsoukiàs A, Vincke P (2000) Evaluation and decision models: a critical perspective. Kluwer, Dordrecht

    Google Scholar 

  6. Bouyssou D, Marchant T, Pirlot M, Tsoukiàs A, Vincke P (2006) Evaluation and decision models with multiple criteria: stepping stones for the analyst, 1st edn. International series in operations research and management science, vol 86. Springer, Boston

  7. Clemen RT, Reilly T (2001) Making hard decision with decision tools. South-Western Cengage Learning, Mason, OH

    Google Scholar 

  8. Coutinho-Rodrigues J, Simão A, Antunes CH (2011) A gis-based multicriteria spatial decision support system for planning urban infrastructures. Decis Support Syst 51(3):720–726

    Article  Google Scholar 

  9. Dias LC, Mousseau V (2003) IRIS: a DSS for multiple criteria sorting problems. J Multi-Criteria Decis Anal 12(4–5):285–298

    Article  Google Scholar 

  10. Figueira J, Greco S, Ehrgott M (2005) Multiple criteria decision analysis: state of the art surveys, vol 78. Springer, Berlin

    Google Scholar 

  11. Gentry J, Long L, Gentleman R, Falcon S, Hahne F, Sarkar D, Rgraphviz KH (2009) Provides plotting capabilities for R graph objects. R package version 2.16.0

  12. Gentry J, Gentleman R, Huber W (2016) How to plot a graph using rgraphviz. https://www.bioconductororg/packages/release/bioc/vignettes/Rgraphviz/inst/doc/Rgraphviz.pdf

  13. Grabisch M, Kojadinovic I, Meyer P (2006) Using the Kappalab R package for capacity identification in choquet integral based maut. In: Proceedings of the 11th international conference on information processing and management of uncertainty in knowledge-based systems, pp 1702–1709

  14. Grabisch M, Kojadinovic I, Meyer P (2015) kappalab-non-additive measure and integral manipulation functions. https://cran.r-project.org/package=kappalab

  15. Guitouni A, Martel JM, Vincke P, North P, Val-bblair O (1998) A framework to choose a discrete multicriterion aggregation procedure. Defence research establishment valcatier (DREV)

  16. Hodgett RE (2016) Comparison of multi-criteria decision-making methods for equipment selection. Int J Adv Manuf Technol 85(5):1145–1157. doi:10.1007/s00170-015-7993-2

    Article  Google Scholar 

  17. Hodgett RE, Martin EB, Montague G, Talford M (2014) Handling uncertain decisions in whole process design. Production Plan Control 25(12):1028–1038. doi:10.1080/09537287.2013.798706

    Article  Google Scholar 

  18. Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applications a state-of-the-art survey. Lecture notes in economics and mathematical systems. Springer, New York

  19. IEEE Spectrum (2016) The 2016 top programming languages. http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages

  20. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5(3):299–314

    Google Scholar 

  21. International Society on Multiple Criteria Decision Making (2014) Multiple criteria decision making website. http://www.mcdmsociety.org/content/software-related-mcdm

  22. Ishizaka A, Nemery P (2013) Multi-method platforms. Methods and software, multi-criteria decision analysis. Wiley, New York, pp 275–287

  23. Jacquet-Lagrèze E, Siskos Y (1982) Assessing a set of additive utility functions for multicriteria decision making: the UTA method. Eur J Oper Res 10:151–164

    Article  Google Scholar 

  24. Keeney R, Raiffa H (1976) Decisions with multiple objectives: preferences and value tradeoffs. J. Wiley, New York

    Google Scholar 

  25. Kostkowski M, Slowinski R (1996) UTA+ application (v. 1.20)-user’s manual. Document du LAMSADE 95

  26. Lahdelma R, Salminen P, Hokkanen J (2014) Using multicriteria methods in environmental planning and management. Environ Manage 26(6):595–605. doi:10.1007/s002670010118

    Article  Google Scholar 

  27. Leistedt B (2011) UTAR library for MCDA. https://cran.r-project.org/package=UTAR

  28. Leroy A, Mousseau V, Pirlot M (2011) Learning the parameters of a multiple criteria sorting method. In: Brafman RI, Roberts FS, Tsoukiàs A (eds) ADT. Lecture Notes in Computer Science, vol 6992. Springer, New York, pp 219–233

  29. Make It Rational (2016) Make it rational website. http://makeitrational.com/

  30. Mayag B, Cailloux O, Mousseau V (2011) Mcda tools and risk analysis: the decision deck project. In: Advances in safety, reliability and risk management: ESREL 2011, p 377

  31. Meyer P, Bigaret S (2012) Diviz: a software for modeling, processing and sharing algorithmic workflows in MCDA. Intell Decis Technol 6(4):283–296. doi:10.3233/IDT-2012-0144

    Article  Google Scholar 

  32. Meyer P, Bigaret S (2012b) RXMCDA—functions to parse and create XMCDA files. https://cran.r-project.org/package=RXMCDA

  33. Meyer P, Olteanu AL (2017) Integrating large positive and negative performance differences into multicriteria majority-rule sorting models. Comput Oper Res 81:216–230

    Article  Google Scholar 

  34. Meyer P, Bigaret S, Hodgett R, Olteanu AL (2017) MCDA: functions to support the multicriteria decision aiding process. https://cran.r-project.org/package=MCDA

  35. Mousseau V, Slowinski R, Zielniewicz P (1999) ELECTRE TRI 2.0 a methodological guide and user’s manual. Document du LAMSADE, vol 111. Universite Paris, Dauphine, pp 263–275

  36. Mousseau V, Slowinski R, Zielniewicz P (2000) A user-oriented implementation of the ELECTRE-TRI method integrating preference elicitation support. Comput Oper Res 27(7):757–777

    Article  Google Scholar 

  37. Mustajoki J, Marttunen M (2013) Comparison of multi-criteria decision analytical software. Finnish Environment Institute, Helsinki

  38. Papamichail KN, French S (2013) 25 years of MCDA in nuclear emergency management. IMA J Manag Math 24(4):481–503

    Article  Google Scholar 

  39. Piatetsky G (2016) R, Python duel as top analytics, data science software—kdnuggets 2016 software poll results. http://www.kdnuggets.com/2016/06/r-python-top-analytics-data-mining-data-science-software.html

  40. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0, http://www.R-project.org

  41. Roy B (1991) The outranking approach and the foundations of electre methods. Theor Decis 31(1):49–73. doi:10.1007/BF00134132

    Article  Google Scholar 

  42. Roy B (1996) Multicriteria methodology for decision aiding. Kluwer Academic, Dordrecht

    Google Scholar 

  43. Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resource allocation (Decision making series). Mcgraw-Hill, New York

  44. Simon HA (1976) Administrative behavior; a study of decision-making processes in administrative organization. 3rd edn. Oxford University Press, Oxford

  45. Siraj S, Mikhailov L, Keane JA (2015) Contribution of individual judgments toward inconsistency in pairwise comparisons. Eur J Oper Res 242(2):557–567. doi:10.1016/j.ejor.2014.10.024

    Article  Google Scholar 

  46. Sobrie O, Mousseau V, Pirlot M (2013) Learning a majority rule model from large sets of assignment examples. In: ADT. Lecture Notes in Computer Science, vol 8176. Springer, Berlin, pp 336–350

  47. Statistical Design Institute (2016) Topsis website. http://www.stat-design.com/Software/TOPSIS.html

  48. Taillandier P, Stinckwich S (2011) Using the promethee multi-criteria decision making method to define new exploration strategies for rescue robots. In: 2011 IEEE international symposium on safety, security, and rescue robotics, pp 321–326. doi:10.1109/SSRR.2011.6106747

  49. Tervonen T (2012) JSMAA: open source software for smaa computations. Int J Syst Sci 2012:1–13

    Google Scholar 

  50. TransparentChoice Ltd (2016) Transparent choice website. https://www.transparentchoice.com

  51. Tsoukias A (2007) On the concept of decision aiding process: an operational perspective. Ann Oper Res 154:3–27

    Article  Google Scholar 

  52. Tversky A, Kahneman D (1981) The framing of decisions and the psychology of choice. Science 211(4481):453–458

    Article  Google Scholar 

  53. Venables B, Smith D, Gentleman R, Ihaka R (1998) Notes on R: a programming environment for data analysis and graphics. University of Auckland

  54. von Winterfeldt D, Edwards W (1986) Decision analysis and behavorial research. Cambridge University Press, Cambridge

    Google Scholar 

  55. Wahlster P, Goetghebeur M, Kriza C, Niederländer C, Kolominsky-Rabas P (2015) Balancing costs and benefits at different stages of medical innovation: a systematic review of multi-criteria decision analysis (MCDA). BMC Health Serv Res 15(1):1–12

    Article  Google Scholar 

  56. Weistroffer HR, Smith CH, Narula SC (2005) Multiple criteria decision support software. In: Multiple criteria decision analysis: state of the art surveys. Springer, Berlin, pp 989–1009

  57. Yatsalo B, Didenko V, Gritsyuk S, Sullivan T (2015) Decerns: a framework for multi-criteria decision analysis. Int J Comput Intell Syst 8(3):467–489

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patrick Meyer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bigaret, S., Hodgett, R.E., Meyer, P. et al. Supporting the multi-criteria decision aiding process: R and the MCDA package. EURO J Decis Process 5, 169–194 (2017). https://doi.org/10.1007/s40070-017-0064-1

Download citation

Keywords

  • R
  • MCDA
  • Decision aiding process

Mathematics Subject Classification

  • 90
  • 68