Skip to main content
Log in

Homotopy pro-nilpotent structured ring spectra and topological Quillen localization

  • Published:
Journal of Homotopy and Related Structures Aims and scope Submit manuscript

Abstract

The aim of this paper is to show that homotopy pro-nilpotent structured ring spectra are \({ \mathsf {TQ} }\)-local, where structured ring spectra are described as algebras over a spectral operad \({ \mathcal {O} }\). Here, \({ \mathsf {TQ} }\) is short for topological Quillen homology, which is weakly equivalent to \({ \mathcal {O} }\)-algebra stabilization. An \({ \mathcal {O} }\)-algebra is called homotopy pro-nilpotent if it is equivalent to a limit of nilpotent \({ \mathcal {O} }\)-algebras. Our result provides new positive evidence to a conjecture by Francis–Gaisgory on Koszul duality for general operads. As an application, we simultaneously extend the previously known 0-connected and nilpotent \({ \mathsf {TQ} }\)-Whitehead theorems to a homotopy pro-nilpotent \({ \mathsf {TQ} }\)-Whitehead theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amabel, A.: Poincare/Koszul duality for general operads. Homol. Homot. Appl. 24(2), 1–30 (2022)

    Article  MathSciNet  Google Scholar 

  2. Ayala, D., Francis, J.: Zero-pointed manifolds. J. Inst. Math. Jussieu 20(3), 785–858 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Basterra, M.: André-Quillen cohomology of commutative \(S\)-algebras. J. Pure Appl. Algebra 144(2), 111–143 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Basterra, M., Mandell, M.A.: Homology and cohomology of \(E_\infty \) ring spectra. Math. Z. 249(4), 903–944 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Basterra, M., Mandell, M.A.: Homology of \(E_n\) ring spectra and iterated \(THH\). Algebr. Geom. Topol. 11(2), 939–981 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berger, C., Moerdijk, I.: Axiomatic homotopy theory for operads. Comment. Math. Helv. 78(4), 805–831 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blanc, D., Johnson, M.W., Turner, J.M.: Higher homotopy operations and André-Quillen cohomology. Adv. Math. 230(2), 777–817 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bousfield, A.K.: The localization of spaces with respect to homology. Topology 14, 133–150 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bousfield, A.K., Kan, D.M.: Homotopy Limits, Completions and Localizations. Lecture Notes in Mathematics, vol. 304. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  10. Ching, M., Harper, J.E.: A nilpotent Whitehead theorem for TQ-homology of structured ring spectra. Tbilisi Math. J. 11, 69–79 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ching, M., Harper, J.E.: Derived Koszul duality and TQ-homology completion of structured ring spectra. Adv. Math. 341, 118–187 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ching, M., Salvatore, P.: Koszul duality for topological En-operads (2020). arXiv preprint arXiv:2002.03878

  13. Clark, D.: On the Goodwillie derivatives of the identity in structured ring spectra. Tbilisi Math. J. Spec. Issue Homotopy Theory Spectra Struct. Ring Spectra (2020)

  14. Dror Farjoun, E.: Cellular Spaces, Null Spaces and Homotopy Localization, Volume 1622 of Lecture Notes in Mathematics. Springer, Berlin (1996)

    Google Scholar 

  15. Dwyer, W.G.: Localizations. In: Axiomatic, Enriched and Motivic Homotopy Theory, Volume 131 of NATO Sci. Ser. II Math. Phys. Chem. Kluwer Acad. Publ., Dordrecht, pp. 3–28 (2004)

  16. Elmendorf, A.D., Kriz, I., Mandell, M.A., May, J.P.: Rings, Modules, and Algebras in Stable Homotopy Theory, Volume 47 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1997). (With an appendix by M. Cole)

  17. Francis, J., Gaitsgory, D.: Chiral Koszul duality. Selecta Math. (N.S.), 18(1), 27–87 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fresse, B.: Lie theory of formal groups over an operad. J. Algebra 202(2), 455–511 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fresse, B.: Koszul duality of \(E_n\)-operads. Selecta Math. (N.S.) 17(2), 363–434 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goerss, P.G.: On the André-Quillen cohomology of commutative \({ F}_2\)-algebras. Astérisque 186, 169 (1990)

    MATH  Google Scholar 

  21. Goerss, P.G., Hopkins, M.J.: Moduli problems for structured ring spectra. preprint (2005). https://sites.math.northwestern.edu/pgoerss/spectra/obstruct.pdf

  22. Goerss, P.G., Jardine, J.F.: Simplicial Homotopy Theory. Progress in Mathematics, vol. 174. Birkhäuser, Basel (1999)

    Book  MATH  Google Scholar 

  23. Goodwillie, T.G.: Calculus. III. Taylor series. Geom. Topol. 7, 645–711 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Harper, J.E.: Bar constructions and Quillen homology of modules over operads. Algebr. Geom. Topol. 10(1), 87–136 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Harper, J.E., Hess, K.: Homotopy completion and topological Quillen homology of structured ring spectra. Geom. Topol. 17(3), 1325–1416 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Harper, J.E., Zhang, Y.: Topological Quillen localization of structured ring spectra. Tbilisi Math. J. 12, 67–89 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Heuts, G.: Goodwillie approximations to higher categories. Mem. Am. Math. Soc. 272(1333) (2021)

  28. Hirschhorn, P.S.: Model Categories and Their Localizations. Mathematical Surveys and Monographs, vol. 99. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  29. Kriz, I., May, J.P.: Operads, algebras, modules and motives. Astérisque 233, iv+145 (1995)

  30. Kuhn, N.J.: Localization of André–Quillen–Goodwillie towers, and the periodic homology of infinite loopspaces. Adv. Math. 201(2), 318–378 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kuhn, N.J.: Goodwillie towers and chromatic homotopy: an overview. In: Proceedings of the Nishida Fest (Kinosaki 2003), Volume 10 of Geom. Topol. Monogr.. Geom. Topol. Publ., Coventry, pp. 245–279 (2007)

  32. Lurie, J.: Higher algebra. (2017)

  33. May, J.P.: The Geometry of Iterated Loop Spaces. Lectures Notes in Mathematics, vol. 271. Springer, Berlin (1972)

    Book  Google Scholar 

  34. May, J.P., Ponto, K.: More Concise Algebraic Topology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (2012) (Localization, completion, and model categories)

  35. Pereira, L.A.: Goodwillie calculus in the category of algebras over a spectral operad. PhD thesis, MIT (2013). http://math.mit.edu/luisalex/

  36. Quillen, D.: On the (co-) homology of commutative rings. In: Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968). Amer. Math. Soc., Providence, pp. 65–87 (1970)

  37. Rezk, C.: Spaces of Algebra Structures and Cohomology of Operads. PhD thesis, MIT (1996). http://www.math.uiuc.edu/rezk/

  38. Rezk, C.: Every homotopy theory of simplicial algebras admits a proper model. Topol. Appl. 119(1), 65–94 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schonsheck, N.: Fibration theorems for TQ-completion of structured ring spectra. Tbilisi Math. J. Spec. Issue Homotopy Theory Spectra Struct. Ring Spectra (2020)

  40. Schonsheck, N.: TQ-completion and the Taylor tower of the identity functor. J. Homotopy Relat. Struct. 17(2), 201–216 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sullivan, D.: Geometric topology. Part I. Massachusetts Institute of Technology, Cambridge, Mass. (1971) (Localization, periodicity, and Galois symmetry, Revised version)

Download references

Acknowledgements

The author would like to thank John E. Harper and Niko Schonsheck for inspiring discussions and helpful suggestions. The author would like to thank Michael Ching, Martin Frankland, Mark W. Johnson and Jérôme Scherer for helpful conversations. The author is grateful to Oscar Randal-Williams for detailed and helpful critical comments on an early draft of this paper. The author would like to thank the anonymous referee for detailed suggestions. The author was supported in part by the Simons Foundation: Collaboration Grants for Mathematicians #638247, and by the National Natural Science Foundation of China No. 11871284; 12001474; 12261091; 12271183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhang.

Additional information

Communicated by Craig Westerland.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y. Homotopy pro-nilpotent structured ring spectra and topological Quillen localization. J. Homotopy Relat. Struct. 17, 511–523 (2022). https://doi.org/10.1007/s40062-022-00316-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40062-022-00316-9

Keywords

Mathematics Subject Classification

Navigation