Abstract
We introduce the notion of cumulants as applied to linear maps between associative (or commutative) algebras that are not compatible with the algebraic product structure. These cumulants have a close relationship with \(A_{\infty }\) and \(C_{\infty }\) morphisms, which are the classical homotopical tools for analyzing deformations of algebraically compatible linear maps. We look at these two different perspectives to understand how infinity-morphisms might inform our understanding of cumulants. We show that in the presence of an \(A_{\infty }\) or \(C_{\infty }\) morphism, the relevant cumulants are strongly homotopic to zero.
This is a preview of subscription content, access via your institution.









References
- 1.
Bandiera, R., Schaetz, F.: How to discretize the differential forms on the interval. arXiv preprint arXiv:1607.03654v2 (2016)
- 2.
Chen, K.T.: Iterated path integrals. Bull. Am. Math. Soc. 83(5), 831–879 (1977)
- 3.
Cheng, X., Getzler, E.: Transferring homotopy commutative algebraic structures. J. Pure Appl. Algebra 212, 11 (2006)
- 4.
Cuntz, J., Quillen, D.: Cyclic homology and nonsingularity. J. Am. Math. Soc. 8(2), 373–442 (1995)
- 5.
Drummond-Cole, G.C., Park, J.-S., Terilla, J.: Homotopy probability theory I. J. Homotopy Relat. Struct. 10(3), 425–435 (2015)
- 6.
Drummond-Cole, G.C., Park, J.-S., Terilla, J.: Homotopy probability theory II. J. Homotopy Relat. Struct. 10(3), 623–635 (2015)
- 7.
Frenkel, I.B., Zhu, Y.: Vertex operator algebras associated to representations of affine and virasoro algebras. Duke Math. J. 66(1), 123–168 (1992)
- 8.
Gugenheim, V.K.A.M.: On Chen’s iterated integrals. Ill. J. Math. 21(3), 703–715 (1977)
- 9.
Gugenheim, V.K.A.M.: On the multiplicative structure of the de rham cohomology of induced fibrations. Ill. J. Math. 22(4), 604–609 (1978)
- 10.
Kadeishvili, T.V.: On the homology theory of fibre spaces. Uspekhi Mat. Nauk 35(213), 183–188 (1980)
- 11.
Kontsevich, M., Soibelman, Y.: Notes on a-infinity algebras, a-infinity categories and non-commutative geometry. I. arXiv:math/0606241v2 (2006)
- 12.
Lefèvre-Hasegawa, K.: Sur les A-infini catégories. PhD dissertation, Univ. Paris 7 (2003)
- 13.
Lehner, F.: Cumulants in noncommutative probability theory I. Noncommutative exchangeability systems. Mathematische Zeitschrift 248(1), 67–100 (2004)
- 14.
Loday, J.L., Vallette, B.: Algebraic Operads, volume 346 of Grundlehren der mathematischen Wissenschaften, 1 edn. Springer, Berlin (2012)
- 15.
May, J.P.: Simplicial Objects in Algebraic Topology. Van Nostrand Mathematical Studies, vol. 11. Van Nostrand (1968)
- 16.
Merkulov, S.A.: Strong homotopy algebras of a kaehler manifold. Int. Math. Res. Notices 1999(3), 153 (1999)
- 17.
Pilaud, V., Santos, F.: The brick polytope of a sorting network. Eur. J. Comb. 33(4), 632–662 (2012)
- 18.
Ree, R.: Lie elements and an algebra associated with shuffles. Ann. Math. 68(2), 210–220 (1958)
- 19.
Stasheff, J.D.: Homotopy associativity of h-spaces. I. Trans. Am. Math. Soc. 108(2), 275–292 (1963)
- 20.
Stasheff, J.D.: Homotopy associativity of h-spaces. II. Trans. Am. Math. Soc. 108(2), 293–312 (1963)
- 21.
Sugawara, M.: On a condition that a space is an h-space. Math. J. Okayama Univ. (1957)
- 22.
Sugawara, M.: On the homotopy-commutativity of groups and loop spaces. Mem. College Sci. Univ. Kyoto Ser. A Math. 33(2), 257–269 (1960)
- 23.
Vallette, B.: Algebra+ homotopy= operad. arXiv preprint arXiv:1202.3245 (2012)
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Communicated by Jim Stasheff.
Rights and permissions
About this article
Cite this article
Ranade, N. Homotopical perspective on statistical quantities. J. Homotopy Relat. Struct. 16, 155–173 (2021). https://doi.org/10.1007/s40062-020-00273-1
Received:
Accepted:
Published:
Issue Date:
Keywords
- Cumulants
- Boolean cumulants
- A infinity and C infinity morphisms