Twisting structures and morphisms up to strong homotopy

  • Kathryn Hess
  • Paul-Eugène ParentEmail author
  • Jonathan Scott


We define twisted composition products of symmetric sequences via classifying morphisms rather than twisting cochains. Our approach allows us to establish an adjunction that simultaneously generalizes a classic one for algebras and coalgebras, and the bar-cobar adjunction for quadratic operads. The comonad associated to this adjunction turns out to be, in several cases, a standard Koszul construction. The associated Kleisli categories are the “strong homotopy” morphism categories. In an appendix, we study the co-ring associated to the canonical morphism of cooperads Open image in new window, which is exactly the two-sided Koszul resolution of the associative operad Open image in new window, also known as the Alexander-Whitney co-ring.


Composition product Classifying morphism Twisting cochain Kleisli category Strong homotopy morphism Koszul resolution 



This has proved to be a very long-term project, which has evolved significantly over the past nine years. Earlier versions of our approach to describing strongly homotopy morphisms via co-rings can be found on the arXiv [19]. Results from these earlier manuscripts, in particular concerning the Alexander-Whitney co-ring, which have already been applied in various articles and theses (e.g., [17, 18, 20, 21, 29] and [6]), are also stated and proved here. The first author would like to acknowledge the Mittag-Leffler Institute. The second author acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) (funding reference number 06133). Finally, the authors would like to acknowledge the support of the Midwest Topology Network.

Supplementary material


  1. 1.
    Abad, C.A., Crainic, M., Dherin, B.: Tensor products of representations up to homotopy. J. Homotopy Relat. Struct. 6(2), 239–288 (2011)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Baues, H.J., Lemaire, J.-M.: Minimal models in homotopy theory. Math. Ann. 225(3), 219–242 (1977)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Berger, C., Moerdijk, I.: Axiomatic homotopy theory for operads. Comment. Math. Helv. 78(4), 805–831 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berger, C., Moerdijk, I.: Resolution of coloured operads and rectification of homotopy algebras. In: Categories in Algebra, Geometry and Mathematical Physics, Contemp. Math., vol. 431, Amer. Math. Soc., Providence, RI, pp. 31–58 (2007)Google Scholar
  5. 5.
    Boardman, J.M.: Conditionally convergent spectral sequences. In: Homotopy Invariant Algebraic Structures (Baltimore, MD, 1998), Contemp. Math., vol. 239, American Mathematical Society, Providence, RI, pp. 49–84 (1999)Google Scholar
  6. 6.
    Boyle, M.: An algebraic model for the homology of pointed mapping spaces out of a closed surface, Ph.D. Thesis. University of Aberdeen, UK (2009)Google Scholar
  7. 7.
    Brown Jr., E.H.: Twisted tensor products. I. Ann. Math. (2) 69, 223–246 (1959)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chachólski, W., Scherer, J.: Homotopy theory of diagrams. Mem. Am. Math. Soc. 155(736), x+90 (2002)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. Trans. Am. Math. Soc. 63, 85–124 (1948)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Drummond-Cole, G.C., Hirsh, J.: Model structures for coalgebras. Proc. Am. Math. Soc. 144(4), 1467–1481 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fresse, B.: On the homotopy of simplicial algebras over an operad. Trans. Am. Math. Soc. 352(9), 4113–4141 (1999)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Benoit, F.: Koszul duality of operads and homology of partition posets. In: Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic \(K\)-Theory, Contemp. Math., vol. 346, Amer. Math. Soc., Providence, RI, pp. 115–215 (2004)Google Scholar
  13. 13.
    Benoit, F.: Modules over operads and functors. In: Lecture Notes in Mathematics, vol. 1967. Springer, Berlin (2009)Google Scholar
  14. 14.
    Getzler, E., Jones, J.D.S.: Operads, homotopy algebra, and iterated integrals for double loop spaces. arxiv:hep-th/9403055 (1994)
  15. 15.
    Ginzburg, V., Kapranov, M.: Koszul duality for operads. Duke Math. J. 76(1), 203–272 (1994)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gugenheim, V.K.A.M., Munkholm, H.J.: On the extended functoriality of Tor and Cotor. J. Pure Appl. Algebra 4, 9–29 (1974)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hess, K.: The Hochschild complex of a twisting cochain. J. Algebra 451, 302–356 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hess, K., Levi, R.: An algebraic model for the loop space homology of a homotopy fiber. Algebraic Geom. Topol. 7, 1699–1765 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hess, K., Parent, P.-E., Scott, J.: Co-rings over operads characterize morphisms. arxiv:math.AT/0505559 (2005)
  20. 20.
    Hess, K., Parent, P.-E., Scott, J.: CoHochschild homology of chain coalgebras. J. Pure Appl. Algebra 213(4), 536–556 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hess, K., Parent, P.-E., Scott, J., Tonks, A.: A canonical enriched Adams-Hilton model for simplicial sets. Adv. Math. 207(2), 847–875 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Iwase, N., Mimura, M.: Higher Homotopy Associativity, Algebraic Topology (Arcata, CA, 1986), Lecture Notes in Math., vol. 1370. Springer, Berlin, pp. 193–220 (1989)Google Scholar
  23. 23.
    Leinster, T.: Homotopy algebras for operads. arxiv:math/0002180v1 [math.QA] (2000)
  24. 24.
    Loday, J.-L., Vallette, B.: Algebraic operads, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 346. Springer, Heidelberg (2012)Google Scholar
  25. 25.
    Lane, S.M.: Categories for the Working Mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5. Springer-Verlag, New York (1998)Google Scholar
  26. 26.
    Markl, M.: Homotopy algebras are homotopy algebras. Forum Math. 16, 129–160 (2004)MathSciNetCrossRefGoogle Scholar
  27. 27.
    May, J.P.: A general algebraic approach to Steenrod operations, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod’s Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970), Lecture Notes in Mathematics, Vol. 168. Springer, Berlin, pp. 153–231 (1970)Google Scholar
  28. 28.
    Munkholm, H.J.: shm maps of differential algebras. I. A characterization up to homotopy. J. Pure Appl. Algebra 9(1), 39–46 (1976/77)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Naito, T.: Coalgèbres d’Alexander-Whitney: un modèle algébrique pour les espaces topologiques, Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, Switzerland (2009)Google Scholar
  30. 30.
    Ndombol, B., Thomas, J.-C.: Steenrod operations in \(shc\)-algebras. J. Pure Appl. Algebra 192(1–3), 239–264 (2004)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Rezk, C.W.: Spaces of algebra structures and cohomology of operads, Ph.D. Thesis, Massachusetts Institute of Technology (1996)Google Scholar
  32. 32.
    Riehl, E.: Algebraic model structures. New York J. Math. 17, 173–231 (2011)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Stasheff, J.D.: Homotopy associativity of \(H\)-spaces. I, II. Trans. Am. Math. Soc. 108, 275–292 (1963)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Stasheff, J.D.: Homotopy associativity of \(H\)-spaces. I, II. Trans. Am. Math. Soc. 108, 293–312 (1963)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Vallette, B.: Homotopy theory of homotopy algebras. arXiv:1411.5533v3 (2014)

Copyright information

© Tbilisi Centre for Mathematical Sciences 2019

Authors and Affiliations

  • Kathryn Hess
    • 1
  • Paul-Eugène Parent
    • 2
    Email author
  • Jonathan Scott
    • 3
  1. 1.MATHGEOM, École Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Department of Mathematics and StatisticsOttawaCanada
  3. 3.Department of MathematicsCleveland State UniversityClevelandUSA

Personalised recommendations