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Tate provided an explicit way to kill a nontrivial homology class of a commutative differential graded algebra over a commutative noetherian ring R in Tate (Ill J Math 1:14–27, 1957). The goal of this article is to generalize his result to the case of GBV (Gerstenhaber–Batalin–Vilkovisky) algebras and, more generally, the descendant \(L_\infty \)-algebras. More precisely, for a given GBV algebra \((\mathcal {A}=\oplus _{m\ge 0}\mathcal {A}_m, \delta , \ell _2^\delta )\), we provide another explicit GBV algebra \((\widetilde{\mathcal {A}}=\oplus _{m\ge 0}\widetilde{\mathcal {A}}_m, \widetilde{\delta }, \ell _2^{\widetilde{\delta }})\) such that its total homology is the same as the degree zero part of the homology \(H_0(\mathcal {A}, \delta )\) of the given GBV algebra \((\mathcal {A}, \delta , \ell _2^\delta )\).
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                                    1 Introduction
1.1 Tate’s result and the main theorem
Throughout this paper, R will be a commutative noetherian \(k\)-algebra where \(k\) is a field of characteristic zero.Footnote 1 Let M be an ideal of R. In [1], Tate proved that there exists an acyclic commutative differential graded algebra (so called CDGA) X over R, whose underlying graded algebra is free, such that its zeroth homology \(H_0(X) =R/M\) by applying the explicit technique of killing nontrivial homology classes to the Koszul chain complex of R / M. In other words, there exists a free resolution of a given CDGA (R / M,0) (the graded algebra R / M equipped with the zero differential) in the category of commutative differential graded algebras over R. The goal of this paper is to generalize his technique of killing nontrivial homology classes, to the case when M is not an ideal of R but satisfies some more general condition; in particular, we generalize this to the case of GBV (Gerstenhaber–Batalin–Vilkovisky) algebras which plays an interesting role in mirror symmetry (e.g. see p. 212, [2]). The GBV algebra is a triple \((\mathcal {A}, \delta , \ell _2)\) where a graded algebra \(\mathcal {A}=\oplus _{m\ge 0}\mathcal {A}_m\) equipped with a differential \(\delta :\mathcal {A}_m \rightarrow \mathcal {A}_{m-1}\) and a graded Lie bracket
$$\begin{aligned} \ell _2(x,y) =\ell _2^\delta (x,y):= \delta (x \cdot y) - \delta x \cdot y - (-1)^{|x|} x \cdot \delta y. \end{aligned}$$

                    (1.1)
                

 See section 4.1, [3] for more details on GBV algebras. In the case of GBV algebras, our result can be formulated as the following theorem:

                  Theorem 1.1

                  Let \((\mathcal {A}=\oplus _{m\ge 0}\mathcal {A}_m, \delta , \ell _2)\) be a GBV algebra. Then there is an explicit GBV algebra \((\widetilde{\mathcal {A}}=\oplus _{m\ge 0}\widetilde{\mathcal {A}}_m, \widetilde{\delta }, \widetilde{\ell _2})\) such that its total homology is the same as the degree zero part \(H_0(\mathcal {A}, \delta )=\mathcal {A}_0/\left( \delta (\mathcal {A}_1) \cap \mathcal {A}_0\right) \) of the given GBV algebra \((\mathcal {A}, \delta , \ell _2)\).

                In Theorem 1.1, the abstract existence of \((\widetilde{\mathcal {A}}, \widetilde{\delta }, \widetilde{\ell _2})\) follows from the general theory of Koszul duality for the GBV operads (see [4, 5], for instance). The homotopy transfer theorem equips \(H_\bullet (\mathcal {A},\delta )\) with a homotopy GBV algebra structure and the general Koszul duality will provide an existence of a homotopy GBV algebra whose total homology is isomorphic to \(H_0(\mathcal {A},\delta )\). The general theory allows us to rectify this homotopy GBV algebra to a quasi-isomorphic GBV algebra. But the point of Theorem 1.1 is to provide an explicit quasi-free resolution of a GBV algebra.
In order to explain the condition for M in the more general case, we reformulate Tate’s result using a Lie algebra representation. Since R is noetherian, the ideal M is generated by \(f_1, \ldots , f_m \in R\) with \(m \ge 1\). Consider the abelian Lie algebra \(\mathfrak {g}_M\) over \(k\) with dimension m. Denote its \(k\)-basis by \(e_1, \ldots , e_m\). Then we define a Lie algebra representation
$$\begin{aligned} \rho _M : \mathfrak {g}_M \rightarrow {{\mathrm{End}}}_k(R), \quad e_i \mapsto m_{f_i} \end{aligned}$$

                    (1.2)
                

where \(m_{f_i}\) is the multiplication by \(f_i\) for each \(i=1, \ldots , m\). Let us recall the Chevalley–Eilenberg complex which computes the Lie algebra homology: we consider a \(\mathbb {Z}\)-graded vector space
$$\begin{aligned} E(\mathfrak {g}_M;\rho _M) = \bigoplus _{p\ge 0} E_p(\mathfrak {g}_M; \rho _M), \ \quad \text {where} \ E_p(\mathfrak {g}_M; \rho _M):=R \otimes _{k} \varLambda ^p \mathfrak {g}_M, \end{aligned}$$

and equip it with the differential \(\delta _\rho \) defined by
$$\begin{aligned} \delta _\rho \left( r \otimes (x_1\wedge \cdots \wedge x_n) \right)= & {} \sum _{i=1}^n (-1)^{i+1} \rho _M(x_i) (r) \otimes (x_1 \wedge \cdots \wedge \hat{x_i} \wedge \cdots , \wedge x_n) \nonumber \\&+\sum _{1\le i < j \le n} (-1)^{i+j} r \otimes ([x_i,x_j] \wedge x_1 \wedge \cdots \nonumber \\&\wedge \,\,\,{\hat{x}_i}\wedge \cdots \wedge \hat{x_j} \wedge \cdots \wedge x_n). \end{aligned}$$

                    (1.3)
                

Note that \([x_i, x_j]=0\), since \(\mathfrak {g}_M\) is abelian. The 0th Lie algebra homology \(H_0(\mathfrak {g}_M, R)\) is isomorphic to the residue class ring R / M. We put a \(\mathbb {Z}\)-graded \(k\)-algebra structure by
$$\begin{aligned} (r_1 \otimes \lambda _1) \cdot (r_2 \otimes \lambda _2) := (r_1 \cdot r_2 \otimes \lambda _1 \wedge \lambda _2) \in R \otimes _k\varLambda ^{p+q} \mathfrak {g}_M \end{aligned}$$

                    (1.4)
                

for \(r_1 \otimes \lambda _1 \in R \otimes _k\varLambda ^{p} \mathfrak {g}_M\) and \(r_2 \otimes \lambda _2 \in R \otimes _k\varLambda ^{q} \mathfrak {g}_M\). Since M is assumed to be an ideal of R, \((E(\mathfrak {g}_M;\rho _M),\)\( \delta _\rho )\) becomes a commutative differential graded algebra. Then Tate’s theorem is tantamount to saying that one can kill all the homologies of the CDGA \(( E(\mathfrak {g}_M;\rho _M),\)\( \delta _\rho )\) except for the zeroth homology and construct a free CDGA over R which is quasi-isomorphic to \((H_0(\mathfrak {g}_M, R), 0)\).
Now we explain how to generalize the Tate theorem by suitably weakening the condition that M is an ideal of R. We need two notions for our generalization; the order of a differential operator and the category \(\mathfrak {C}\) of chain complexes over \(k\) equipped with a super-commutative product.
Let \(\mathcal {A}\) be a unital \(\mathbb {Z}\)-graded \(k\)-algebra and \(\pi \in {{\mathrm{End}}}_{k}(\mathcal {A})\). We call a non-zero operator \(\pi \) a differential operator of order \(\le n\), if n is the smallest non-negative integer such that \(\ell _n^\pi \ne 0\) and \(\ell _{n+1}^\pi =0\), where
$$\begin{aligned} \ell _n^\pi (x_1, x_2, \ldots , x_n)=[[\cdots [[\pi , L_{x_1}],L_{x_2}], \cdots ],L_{x_n}](1_\mathcal {A}), \quad \ell _0^\pi (x_1) =\pi (x_1) \end{aligned}$$

for \(x_1, \ldots , x_n \in \mathcal {A}\). Here \(L_x:\mathcal {A}\rightarrow \mathcal {A}\) is left multiplication by x, the commutator \([L,L']:=L\cdot L' - (-1)^{|L|\cdot |L'|}L' \cdot L \in {{\mathrm{End}}}_{k}(\mathcal {A})\), and \(1_{\mathcal {A}}\) is the identity element of \(\mathcal {A}\). Then the condition that M is an ideal of R corresponds to the condition that \(\rho _M(e_i)\) is a differential operator of order \(\le 0\) for each i. Let \(\mathfrak {g}\) be a finite dimensional Lie algebra over \(k\) and let \(\rho \) be a Lie algebra representation of \(\mathfrak {g}\) on a commutative noetherian \(k\)-algebra R. Assume that there exist an integer m such that \(\rho (g)\) is a differential operator of order \(\le m\) for each \(g \in \mathfrak {g}\). If m is strictly bigger than 0, then \(\hbox {Im}\;(\delta _\rho ) \cap R\) is not an ideal of R and \(( E(\mathfrak {g}_M;\rho _M),\)\( \delta _\rho )\) is not a CDGA under the multiplication (1.4) because \(\delta _\rho \) is not a derivation. If the order of \(\rho (g)\) is \(\le 0\) then \(( E(\mathfrak {g}_M;\rho _M),\)\( \delta _\rho )\) is a CDGA and \(\hbox {Im}\;(\delta _\rho ) \cap R\) corresponds to M in our terminology.
We need to enlarge the category of (unital) CDGAs to the category \(\mathfrak {C}=\mathfrak {C}_k\) of chain complexes over a field \(k\) equipped with a super-commutative product. An object of \(\mathfrak {C}\) is a unital \(\mathbb {Z}\)-graded associative and super-commutative \(k\)-algebra \(\mathcal {A}\) with differential \(\delta \), denoted \((\mathcal {A}, \delta )\) such that \(\delta (1_\mathcal {A})=0\). A morphism in \(\mathfrak {C}_k\) is a unit preserving chain map of degree zero (note that a morphism is not necessarily a ring homomorphism). If \((\mathcal {A}, \delta )\) is an object of \(\mathfrak {C}\), we let \(\mathcal {A}_m\) denote the \(k\)-submodule of \(\mathcal {A}\) consisting of homogeneous elements of degree m, and write the \(\mathbb {Z}\)-graded decomposition as \(\mathcal {A}= \bigoplus _{m\in \mathbb {Z}} \mathcal {A}_m\). We use |a| to denote the degree of a homogeneous element \(a \in \mathcal {A}\). The degree is additive
$$\begin{aligned} | a b| = |a|+ |b|, \end{aligned}$$

which implies that the product is a degree zero \(k\)-bilinear map. This category \(\mathfrak {C}\) can be thought of as a generalization of the category of CDGAs. Recall that \((\mathcal {A}, \delta )\) is called a CDGA if and only if \((\mathcal {A}, \delta ) \in \hbox {Ob}(\mathfrak {C})\) and \(\delta \) is a derivation of the product,
$$\begin{aligned} \delta (a b) = \delta (a) b + (-1)^{|a|} a \delta (b), \quad a, b \in \mathcal {A}. \end{aligned}$$

There is a canonical faithful functor from the category of CDGAs to \(\mathfrak {C}\). Note that the Chevalley–Eilenberg chain complex \((E^p (\mathfrak {g}; \rho ), \delta _\rho )\) is an object of \(\mathfrak {C}\) under the multiplication (1.4). Now we state the main theorem.

                  Theorem 1.2

                  Let \(\mathfrak {g}\) be a finite dimensional Lie algebra over \(k\) and \(\rho \) be a Lie algebra representation of \(\mathfrak {g}\) on a commutative noetherian \(k\)-algebra R. Assume that \(\rho (g)\) is a differential operator of a fixed finite order \(\le \mu \) for each \(g \in \mathfrak {g}\) and the total homology \(H(\mathfrak {g}, R)\) is finite dimensional over \(k\). Then we explicitly construct an object \((\mathcal {B}^\rho , \delta ^\rho )\) of the category \(\mathfrak {C}\) such that \(\mathcal {B}^\rho =\bigoplus _{m \ge 0} \mathcal {B}^\rho _m\), the differential \(K^\rho \) has order \(\le \mu +1\), and the total homology of \((\mathcal {B}^\rho , \delta ^\rho )\) is naturally isomorphic to the vector space \(H_0(\mathfrak {g}, R):=R/(\hbox {Im}\;\delta _\rho \cap R)\)

                In other words, we have an exact sequence of R-modules
$$\begin{aligned} \cdots \buildrel \delta ^\rho \over \longrightarrow \mathcal {B}^\rho _2 \buildrel \delta ^\rho \over \longrightarrow \mathcal {B}^\rho _1 \buildrel \delta ^\rho \over \longrightarrow \mathcal {B}^\rho _0=R \rightarrow R/\hbox {Im}\;\delta _\rho \cap R \end{aligned}$$

such that \(\delta ^\rho \in {{\mathrm{End}}}_k(\mathcal {B})\) has order \(\le \mu +1\).

                  Remark 1.3

                  (a) If \(\rho (g)\) is a differential operator of order \(\le 0\) for each \(g\in \mathfrak {g}\), i.e. \(\mu =0\), then Theorem 1.2 is equivalent to the theorem of J. Tate.

                  (b) If \(\mu =1\), then Theorem 1.2 reduces to Theorem 1.1.

                We can reformulate Theorem 1.2 in ring theoretic language in the following way;

                  Theorem 1.4

                  Let M be a \(k\)-subspace of R such that \(M=\sum _{i=1}^n \hbox {Im}\;(o_i)\) for certain elements \(o_1, \ldots , o_n \in {{\mathrm{End}}}_k(R)\). Assume that there exist elements \(x_{i_1}, \ldots , x_{i_{\mu }} \in R\) for each \(i=1, \ldots , n\) such that the R-submodule generated by the image of \([\cdots [[o_i,L_{x_{i_1}}],L_{x_{i_2}}], \cdots ], L_{x_{i_\mu }}]\in {{\mathrm{End}}}_k(R)\) for every \(i=1, \ldots , n\) becomes an ideal of R. Then there exists a resolution \((\mathcal {B}, \mathcal {K})\) of R / M which is an object of the category \(\mathfrak {C}\) and the order (as a differential operator) of \(\mathcal {K}\) is less than or equal to \(\mu +1\).

                If \(\mu =0\), i.e. M is an ideal of R, then Theorem 1.4 is again equivalent to the theorem of Tate.
1.2 Motivation and an idea of a proof
In [6], the authors found a GBV algebra for smooth projective hypersurfaces. This result was generalized to smooth projective complete intersections in [7]. They computed the total homology of the GBV algebra \(BV_X=(\mathcal {A}_X=\oplus _{m\ge 0}\mathcal {A}_{X,m}, \delta _X, \ell _2)\) of a smooth projective complete intersection X and proved that the zeroth part of its homology is naturally isomorphic to the primitive middle dimensional cohomology \(H_{\mathrm{prim}}(X,\mathbb {C})\) of X. Though the homology groups in other degrees are closely related to the lower degree singular cohomology of X, they do not match precisely. In the context of homological mirror symmetry for X, it would be nice to construct a formal Frobenius manifold structure on \(H_{{\mathrm{prim}}}(X,\mathbb {C})\) in an explicit manner. For such a purpose, it turns out that a key technical step is to construct another GBV algebra \(\widetilde{BV}_X\) whose total homology is isomorphic to \(H_{{\mathrm{prim}}}(X,\mathbb {C})\), which is our main motivation for the current article. We can apply Theorem 1.1 to \(BV_X\) to obtain \(\widetilde{BV}_X\).
We also explain a motivation for a more general result (Theorem 1.2), which is why we consider the above generalization of the Koszul–Tate resolution in the context of the category \(\mathfrak {C}\). This category \(\mathfrak {C}\) seems odd at first glance (since the two parts of the structure, the differential and the product, are not compatible), but it turns out that \(\mathfrak {C}\) provides a good framework to study period integrals of algebraic varieties. Our basic principle is that “period integrals of any sort of interesting mathematical objects” can be understood as a homotopy class of a morphism in \(\mathfrak {C}\). The first two authors, in [6], analyzed the period integrals of a smooth projective hypersurface X using the framework of \(\mathfrak {C}\), and consequently constructed a formal semi-Frobenius manifold structure on the middle dimensional primitive cohomology of X. Furthermore they used the deformation functor attached to an \(L_\infty \)-algebra to make an extended formal deformation space of X and a formal flat connection on its tangent bundle which generalizes the Gauss–Manin connection. One of the important technical tools in [6] is the descendant functor\({\mathfrak {Des}}\) from the category \(\mathfrak {C}\) to the category of \(L_\infty \)-algebras, which is also a main technical tool of the current article. The descendant functor measures the failures of compatibility between two mathematical structures. More precisely, for a given object \((\mathcal {A}, \delta )\) in \(\mathfrak {C}_k\), define \({\mathfrak {Des}}\left( \mathcal {A}, \delta \right) = (\mathcal {A}, \underline{\ell }^\delta )\), where \(\underline{\ell }^\delta =\ell _1^\delta , \ell _2^\delta , \ldots ,\) is the family of linear maps \(\ell _n^\delta : S^n(\mathcal {A}) \rightarrow \mathcal {A}\) of degree \(-\,1\), inductively defined by the formula
$$\begin{aligned} \begin{aligned} \ell _1^\delta&=\delta , \ell _n^\delta (x_1, \ldots , x_{n-1}, x_n)= \ell _{n-1}^\delta (x_1,\ldots , x_{n-2}, x_{n-1}\cdot x_n)\\&\quad -\ell _{n-1}^\delta (x_1, \ldots , x_{n-1}) \cdot x_{n} -(-1)^{|x_{n-1}|(1+|x_1|+\cdots + |x_{n-2}|)} x_{n-1}\cdot \\&\quad \ell _{n-1}^\delta (x_1, \ldots , x_{n-2}, x_n), \end{aligned}\end{aligned}$$

for \(n \ge 2\) and any homogeneous elements \(x_1, x_2, \ldots , x_n \in \mathcal {A}\). Then it is proven in [6] that \(\ell _n^\delta \) is well-defined on \(S^n(\mathcal {A})\), where \(S^n(\mathcal {A})\) the nth symmetric product of \(\mathcal {A}\), and \((\mathcal {A}, \underline{\ell }^\delta )\) is a shifted \(L_\infty \)-algebra in the sense of Definition (2.1). Note that \(\ell ^\delta _2\) measures the failure of \(\delta \) being a derivation of the product. This implies that \((\mathcal {A}, \delta =\ell _1^\delta )\) is a CDGA if and only if \(\ell _2^\delta =\ell _3^\delta =\cdots =0\). In fact, the notion of the descendant functor is intimately related to homotopy probability theory, as developed in [8]. We will briefly review the definition of the shifted \(L_\infty \)-algebra and the descendant \(L_\infty \)-algebra in Sect. 2.1.
If one tries to extend the results of [6] to a more general class of algebraic varieties (e.g. projective or toric complete intersections), then it seems technically important to find a resolution of the zeroth homology of a certain Lie algebra representation inside the category \(\mathfrak {C}\). This leads us to consider the problem of generalizing the Koszul–Tate resolution inside the category of CDGAs to the situation of chain complexes with a binary product (i.e. a resolution inside the category \(\mathfrak {C}\)).
The main idea to prove Theorem 1.2 (and Theorem 1.1) is to use an explicit description of the descendant \(L_\infty \)-algebra \((\mathcal {A}, \underline{\ell }^\delta )\) associated to \((\mathcal {A}, \delta )\). We summarize a correspondence between Tate’s situation and our situation in terms of a Lie algebra representation \(\rho :\mathfrak {g}\rightarrow {{\mathrm{End}}}_k(R)\) and \((\mathcal {A},\delta )=(E(\mathfrak {g}; \rho ), \delta _\rho )\) in Table 1.
Table 1 .Full size table

We briefly explain the contents of each section. In Sect. 2.1, we explain why Tate’s method fails in our generalized setting and indicate how to remedy the situation. In Sect. 2.2, we briefly review the descendant \(L_\infty \)-algebras which are important technical tools for our construction.
Section 3 is the main section. In Sect. 3.1, we briefly explain an outline of the proof. In Sect. 3.2, we prove the main theorem in the special case of GBV (Gerstenhaber–Batalin–Vilkovisky) algebras (i.e. Theorem 1.1, or equivalently, \(\mu =1\) in Theorem 1.2). In Sect. 3.3, we deal with the general case and finish the proof.
In Sect. 4, we apply the main theorem to a GBV algebra associated to a smooth projective complete intersection X to obtain a GBV algebra whose total homology is naturally isomorphic to the middle-dimensional primitive cohomology of X.


2 Descendant functor
2.1 Why does Tate’s method fail in the generalized situation?
In this subsection we explain why the Koszul–Tate type resolution fails by using a simple example, when \((\mathcal {A}, \delta )\) is not a CDGA and indicate how to salvage the situation. For simplicity, assume that \((\mathcal {A}, \delta )\) has a GBV (Gerstenhaber–Batalin–Vilkovisky) algebra structure and has homology only inn degree 0 and 1. We further assume that \(H_{1}(\mathcal {A},\delta ) \simeq k\) and let r be a homology representative of a nonzero class in \(H_1(\mathcal {A}, \delta )\). Tate’s method suggests to adjoin a formal variable \(\theta \) to \(\mathcal {A}\) to consider \(\mathcal {A}[\theta ]\) and deform the differential \(\delta \) by \(\delta + r\frac{\partial }{\partial {\theta }}\). He proved that \((\mathcal {A}[\theta ], \delta +\frac{\partial }{\partial {\theta }})\) is a resolution of \((\mathcal {A}, \delta )\), if \((\mathcal {A}, \delta )\) is a CDGA. But if \((\mathcal {A}, \delta )\) is not a CDGA, then a serious problem occurs; namely, \(\delta + r\frac{\partial }{\partial {\theta }}\) is not a differential. Let \(\theta ^n b \in \mathcal {A}[\theta ]\). Let us compute
$$\begin{aligned} \left( \delta +r\frac{\partial }{\partial {\theta }}\right) ^2 ( \theta ^n \cdot b)= & {} \left( \delta +r\frac{\partial }{\partial {\theta }}\right) \left( ( \delta + r \frac{\partial {}}{\partial {\theta }})( \theta ^n \cdot b) \right) \\= & {} \left( \delta +r\frac{\partial }{\partial {\theta }}\right) \left( \theta ^n \delta (b) + r n \theta ^{n-1}b \right) \\= & {} \left( \delta + r \frac{\partial {}}{\partial {\theta }}\right) \left( \theta ^n \delta (b)+ n \theta ^{n-1}r b \right) \\= & {} n \theta ^{n-1} r \cdot \delta (b) + n \theta ^{n-1} \delta (rb)=n \theta ^{n-1}\ell _2^\delta (r,b), \end{aligned}$$

where \(\ell _2^\delta \) was defined in (1.1) and we used \(r^2=0\) (by super-commutativity), \(\delta (r)=0\), and \(\delta ^2=0\). Thus if \(\ell _2^\delta \ne 0\) (which corresponds to the fact that \((\mathcal {A},\delta )\) is not a CDGA), then Tate’s method does not work and we need a new idea. Our idea relies on the notion of descendant \(L_\infty \)-algebras, which we review in the next subsection.
2.2 Descendant \(L_\infty \)-algebra
We briefly recall from [6] the formalism of the descendant functor, which is the main technical tool we use to construct resolutions. In order to fix our convention on \(L_\infty \)-algebras, we set up notations for partitions. A partition \(\pi = B_1 \sqcup B_2\sqcup \cdots \) of the set \([n]=\{1,2, \ldots , n\}\) is a decomposition of [n] into a pairwise disjoint non-empty subsets \(B_i\), called blocks. Blocks are ordered by the minimum element of each block and each block is ordered by the ordering induced from the ordering of natural numbers. The notation \(|\pi |\) means the number of blocks in a partition \(\pi \) and |B| means the size of the block B. If k and \(k'\) belong to the same block in \(\pi \), then we use the notation \(k \sim _\pi k'\). Otherwise, we use \(k \not \sim _\pi k'\). Let P(n) be the set of all partitions of [n]. For a permutation \(\sigma \) of [n], we define a map \(\hat{\sigma }: T^n(V) \rightarrow T^n(V)\) by
$$\begin{aligned} \hat{\sigma }(x_1 \otimes \cdots \otimes x_n) = \epsilon (\sigma ) x_{\sigma (1)} \otimes \cdots \otimes x_{\sigma (n)} \end{aligned}$$

for homogeneous elements \(x_1, \ldots , x_n \in V\), where \(\epsilon (\sigma )=\epsilon (\sigma ,\{x_1, \ldots , x_n\})=\pm 1\) is the Koszul sign determined by decomposing \(\hat{\sigma }\) as composition of adjacent transpositions \(\hat{\tau }\), where \(\hat{\tau }: x_i\otimes x_j \rightarrow (-1)^{|x_i||x_j|} x_j\otimes x_i=\epsilon (\tau , \{x_i,x_j\}) \cdot x_j\otimes x_i\), i.e. the Koszul sign is defined as the product of the signs \(\epsilon (\tau , \{x_i,x_j\})\) of such adjacent transpositions. Note that \(\epsilon (\sigma )\) depends on the degrees of \(x_1, \ldots , x_n\) but we omit this dependence in the notation for simplicity. The Koszul sign \(\epsilon (\pi )\) for a partition \(\pi = B_1 \sqcup B_2 \sqcup \cdots \sqcup B_{|\pi |}\in P(n)\) is defined to be the Koszul sign \(\epsilon (\sigma )\) of the permutation \(\sigma \) determined by
$$\begin{aligned} x_{B_1} \otimes \cdots \otimes x_{B_{|\pi |}} = x_{\sigma (1)} \otimes \cdots \otimes x_{\sigma (n)}, \end{aligned}$$

where \(x_B= x_{j_1} \otimes \cdots \otimes x_{j_{r}}\) if \(B=\{j_1, \ldots , j_{r}\}\). Let \(|x_B|= |x_{j_1}|+\cdots + |x_{j_{r}}|\).

                  Definition 2.1

                  (shifted \(L_{\infty }\)-algebra) A shifted \(L_{\infty }\)-algebra is a \(\mathbb {Z}\)-graded vector space \(V=\bigoplus _{m\in \mathbb {Z}} V^m\) over a field \(k\) with a family \(\underline{\ell }= \ell _1, \ell _2, \ldots \), where \(\ell _k: S^k(V) \rightarrow V\) is a linear map of degree \(-\,1\) on the super-commutative kth symmetric product \(S^k(V)\) for each \(k\ge 1\) such that
$$\begin{aligned} \sum _{\begin{array}{c} \pi \in P(n)\\ |B_i|=n-|\pi |+1 \end{array}} \epsilon (\pi ,i) \ell _{|\pi |}(x_{B_1}, \ldots , x_{B_{i-1}}, \ell (x_{B_i}), x_{B_{i+1}}, \ldots , x_{B_{|\pi |}}) = 0. \end{aligned}$$

                    (2.1)
                

Here we use the following notation;
$$\begin{aligned} \ell (x_{B})= & {} \ell _r(x_{j_1}, \ldots , x_{j_r}) \text { if } B=\{j_1, \ldots , j_r\}\\ \epsilon (\pi , i)= & {} \epsilon (\pi ) (-1)^{|x_{B_1}|+\cdots + |x_{B_{i-1}}|}. \end{aligned}$$

An \(L_{\infty }\)-algebra with unity (or a unital \(L_\infty \)-algebra) is a triple \((V, \underline{\ell },1_V)\), where \((V,\underline{\ell })\) is an \(L_{\infty }\)-algebra and \(1_V\) is a distinguished element in \(V^0\) such that
$$\begin{aligned} \ell _n(x_1, \ldots , x_{n-1}, 1_V)=0 \end{aligned}$$

for all \(n\ge 1\) and every \(x_1, \ldots , x_{n-1} \in V\).

                If we let \(\pi =B_1 \sqcup \cdots B_{i-1} \sqcup B_i \sqcup B_{i+1} \sqcup \cdots \sqcup B_{|\pi |} \in P(n)\), then the condition \(|B_i|=n-|\pi |+1\) in the summation implies that the set \(B_1, \ldots , B_{i-1}, B_{i+1}, \ldots , B_n\) are singletons. Let \(\ell _1=\delta \). For \(n=1\), the relation (2.1) says that \(\delta ^2=0\). For \(n=2\), the relation (2.1) says that
$$\begin{aligned} \delta \ell _2(x_1,x_2) =- \ell _2(\delta x_1, x_2) - (-1)^{|x_1|}\ell _2(x_1, \delta x_2). \end{aligned}$$

                    (2.2)
                

For \(n=3\), we have
$$\begin{aligned} \delta \ell _3(x_1,x_2,x_3)= & {} \ell _2(\ell _2(x_1,x_2), x_3) + (-1)^{|x_1|} \ell _2(x_1, \ell _2(x_2, x_3))\\&+(-1)^{(|x_1|+1)|x_2|}\ell _2(x_2, \ell _2(x_1,x_3)) +\ell _3(\delta x_1, x_2, x_3)\\&+ (-1)^{|x_1|} \ell _3(x_1, \delta x_2, x_3) +(-1)^{|x_1|+|x_2|}\ell _3(x_1,x_2,\delta x_3). \end{aligned}$$


                  Definition 2.2

                  For a given object \((\mathcal {A}, \delta )\) in \(\mathfrak {C}_k\), we define \({\mathfrak {Des}}\left( \mathcal {A}, \delta \right) = (\mathcal {A}, \underline{\ell }^\delta )\), where \(\underline{\ell }^\delta =\ell _1^\delta , \ell _2^\delta , \ldots ,\) is the family of linear mapsFootnote 2\(\ell _n^\delta : S^n(\mathcal {A}) \rightarrow \mathcal {A}\) of degree \(-\,1,\) inductively defined by the formula
$$\begin{aligned} \ell _1^\delta&=\delta ,\ell _n^\delta (x_1, \ldots , x_{n-1}, x_n)= \ell _{n-1}^\delta (x_1,\ldots , x_{n-2}, x_{n-1}\cdot x_n)\nonumber \\&\quad -\ell _{n-1}^\delta (x_1, \ldots , x_{n-1}) \cdot x_{n} -(-1)^{|x_{n-1}|(1+|x_1|+\cdots + |x_{n-2}|)} x_{n-1}\cdot \nonumber \\&\quad \ell _{n-1}^\delta (x_1, \ldots , x_{n-2}, x_n), \end{aligned}$$

                    (2.3)
                

for \(n \ge 2\) and any homogeneous elements \(x_1, x_2, \ldots , x_n \in \mathcal {A}\).

                Since \(\mathcal {A}\) has a unit \(1_\mathcal {A}\) and \(\delta (1_\mathcal {A})=0\), one can also check that
$$\begin{aligned} \ell _n^\delta (x_1, x_2, \ldots , x_n)=[[\cdots [[\delta , L_{x_1}],L_{x_2}], \cdots ],L_{x_n}](1_\mathcal {A}) \end{aligned}$$

for any homogeneous elements \(x_1, x_2, \ldots , x_n \in \mathcal {A}\). Here \(L_x:\mathcal {A}\rightarrow \mathcal {A}\) is left multiplication by x and \([L,L']:=L\cdot L' - (-1)^{|L|\cdot |L'|}L' \cdot L \in {{\mathrm{End}}}_{k}(\mathcal {A})\), where |L| means the degree of L. In particular, \(\ell _2^\delta : S^2(\mathcal {A}) \rightarrow \mathcal {A}\) is given by
$$\begin{aligned} \ell _2^\delta (x,y) = \delta (x \cdot y) - \delta x \cdot y - (-1)^{|x|} x \cdot \delta y. \end{aligned}$$

so that \(\ell ^\delta _2\) measures the failure of \(\delta \) being a derivation of the product. In [6], the authors proved that \((\mathcal {A}, 1_\mathcal {A}, \underline{\ell }^\delta )\) is a unital \(L_\infty \)-algebra [see Definition (2.1)], which we call a descendant\(L_\infty \)-algebra. One can easily check from the inductive definition that if \(\ell ^\delta _m=0\) then \(\ell ^\delta _{m+1}=\ell ^\delta _{m+2}=\cdots = 0\).
For a given morphism \(f: (\mathcal {A}, \delta ) \rightarrow (\mathcal {A}', \delta ')\) in \(\mathfrak {C}_k\), the authors of [6] defined an \(L_\infty \)-morphism \({\mathfrak {Des}}(f)\), that is, family \(\underline{\phi }^f = \phi _1^f, \phi _2^f, \ldots ,\) of linear maps \(\phi _n^f:S^n(\mathcal {A}) \rightarrow \mathcal {A}'\) of degree 0, and proved that the assignment \({\mathfrak {Des}}\) is a functor from \(\mathfrak {C}_k\) to the category of unital \(L_\infty \)-algebras. We call this functor \({\mathfrak {Des}}\)a descendant functor.


3 The main results
3.1 Outline of the proof
When there is a non-trivial homology class r, the main idea of the proof is “killing a homology class” r by employing a new formal variable \(\theta \) so that \(\delta (\theta )=r\), as Tate did in [1]. However, our case is very different from [1]. In [1], \(\delta \) is a derivation so that \(\delta (\theta ^n)= n \theta ^{n-1}\delta (\theta )\) and \(\delta (\theta \cdot v)=\theta \delta (v)\pm \delta (\theta )v\) up to sign. Then one can easily prove that if the new formal variable \(\theta \) does not generate a non-trivial homology class, then neither do the elements like \(\delta (\theta ^n)\) and \(\delta (\theta \cdot v)\). But, in our case, we need to add additional new formal variables to kill \(\delta (\theta ^n)\) and \(\delta (\theta \cdot v)\), since \(\delta \) in this paper is not a derivation.
Our main tool of the proof is to use the descendant \(L_\infty \)-structure. The construction of adding variables has to be coherent to the descendant \(L_\infty \)-structure of \((\mathcal {A}, \underline{\ell }^\delta )\). In order to kill r, we need to add infinitely many new variables to \(\mathcal {A}\) inductively on the degree of the homology classes so that the extended algebra \(\widetilde{\mathcal {A}}\) is explicitly computable and remains to be a descendant \(L_\infty \)-algebra. More precisely, for a given generating (as a \(k\)-algebra) set S of \(\mathcal {A}\), we extend S inductively to \(S\sqcup U_0\), \(S\sqcup U_0\sqcup U_1\), and so on, where \(U_n\) is a finite set of formal variables, and define \(\widetilde{\mathcal {A}}\) to be the \(k\)-algebra (modulo the obvious super-commutative relation) generated by \(S\sqcup U_1 \sqcup U_2 \cdots \) [see \(\mathcal {A}^\theta \) in (3.2) in the GBV case and (3.8) in the general case for precise definitions]. Then we construct a differential \(\tilde{\delta }\) on \(\widetilde{\mathcal {A}}\) using the descendant \(L_\infty \)-relation (see (3.4) in the GBV case and (3.10) in the general case for details) and show that \(\widetilde{\delta }^2=0\) and the non-trivial homology class r we wanted to kill only vanishes. Note that \(\widetilde{\mathcal {A}}\) is always an infinitely generated \(k\)-algebra, even if we start from a finitely generated \(k\)-algebra \(\mathcal {A}\) and like to kill only one nontrivial homology class (in positive degree) of \(\mathcal {A}\).
3.2 The case of GBV algebras
Let \((\mathcal {A},\delta )\) be an object of the category \(\mathfrak {C}\) such that \(\mathcal {A}\) is non-negatively graded i.e. \(\mathcal {A}=\bigoplus _{m\ge 0}\mathcal {A}_m\). We assume that \(\mathcal {A}\) is a finitely generated \(\mathbb {Z}\)-graded \(k\)-algebra whose generators are \(1, q_1, \ldots , q_N\) and that the chain complex \((\mathcal {A}, \delta )\) is a GBV (Gerstenhaber–Batalin–Vilkovisky) algebra containing a non-trivial homology class r of degree \(\ge 1\). Note that \((\mathcal {A},\delta , \ell _2^\delta )\) is a GBV algebra if and only if the \(L_\infty \)-descendants satisfy \(\ell _3^\delta =\ell _4^\delta =\cdots =0\). The goal is to kill the nontrivial homology class r in the category of GBV algebras. We will do this by adding elements of higher degree than the degree of r. Theorem 1.1 follows by applying the following lemma repeatedly.

                  Lemma 3.1

                  We can explicitly construct a GBV algebra \((\mathcal {A}^\theta , \delta ^\theta )\) such that \(\mathcal {A}\subset \mathcal {A}^\theta \) and
$$\begin{aligned} H(\mathcal {A}^\theta , \delta ^\theta )\simeq H(\mathcal {A}, \delta )/k\cdot r, \end{aligned}$$

as \(k\)-vector spaces.

                
                  Proof

                  We introduce a formal variable \(\theta \) corresponding to r such that \(|\theta |-1=|r|\). Let
$$\begin{aligned} \begin{aligned} U_{-1}&=\{q_1, \ldots , q_{N} \} \\ U_{0}&=\{\theta \}. \end{aligned} \end{aligned}$$

                    (3.1)
                

For each \(n\ge 1\), we define a finite set \(U_n\) of formal variables \(\ell ^n(u, v)\) of degree \(|u| + |v| -1\) inductively as follows:
$$\begin{aligned} U_n=\{\ell ^n(u, v): u \in U_{n-1}, v \in V_{n-1}:=U_{n-1} \sqcup \cdots \sqcup U_{-1} \}, \end{aligned}$$

for each \(n \ge 1\). For example, we have that
$$\begin{aligned} U_1= & {} \{\ell ^1(u, v): u \in U_{0}, v \in V_0=U_{0} \sqcup U_{-1} \}, \\ U_2= & {} \{\ell ^2(u, v): u \in U_1, v \in V_1=U_1\sqcup U_0 \sqcup U_{-1} \}. \end{aligned}$$

The notation \(\ell ^n(u,v)\) suggests that later we will use the formula \(\ell _2(u,v)=\ell ^n(u,v)\) to put a descendant \(L_\infty \)-structure on the newly extended algebra [see (3.3) below]. We define an associative and super-commutative \(k\)-algebra
$$\begin{aligned} \mathcal {A}_{(n)}:=\mathcal {A}\otimes _kk[U_n \sqcup U_{n-1}\sqcup \cdots \sqcup U_{0}]=\mathcal {A}[U_n \sqcup U_{n-1}\sqcup \cdots \sqcup U_{0}], \end{aligned}$$

i.e. \(\mathcal {A}_{(n)}\) is the symmetric tensor product of \(\mathcal {A}\) and the (super-)symmetric \(k\)-tensor algebra of the \(k\)-vector space whose basis is given by \(U_n \sqcup U_{n-1}\sqcup \cdots \sqcup U_{0}\). This clearly defines an inductive system \(\mathcal {A}_{(n)} \rightarrow \mathcal {A}_{(n+1)}\) of associative and super-commutative \(k\)-algebras. Let
$$\begin{aligned} \mathcal {A}_{(\infty )}:=\varinjlim _{n \rightarrow \infty } \mathcal {A}_{(n)}. \end{aligned}$$

Let \(I_n\) (respectively, \(I_\infty \)) be the ideal of \(\mathcal {A}_{(n)}\) (respectively, \(\mathcal {A}_{(\infty )}\)) generated by
$$\begin{aligned} \ell ^{k+1}(u_k,v_k)-(-1)^{|u_k||v_k|}\ell ^{k+1}(v_k,u_k) \end{aligned}$$

for \(u_k, v_k \in U_k, k=0, \ldots , n-1 \ (\text {respectively, } k=0,1,\ldots ).\) Let us define
$$\begin{aligned} \mathcal {B}_{(n)}:=\mathcal {A}_{(n)}/I_n, \quad \mathcal {A}^\theta :=\mathcal {B}_{(\infty )}:=\mathcal {A}_{(\infty )}/I_\infty . \end{aligned}$$

                    (3.2)
                

Now we would like to define a \(k\)-linear operator \(\delta ^\theta : \mathcal {A}^\theta \rightarrow \mathcal {A}^\theta \) such that \(\delta ^\theta \circ \delta ^\theta =0\) and \(\delta ^\theta |_{\mathcal {A}} =\delta \); we do this job by constructing \(\delta _k:\mathcal {B}_{(k)} \rightarrow \mathcal {B}_{(k+1)}, k=-1,0,1,\ldots ,\) inductively. Let
$$\begin{aligned} \mathcal {B}_{(-1)}:=\mathcal {A}, \quad \delta _{-1}=K:\mathcal {B}_{(-1)} \rightarrow \mathcal {B}_{(-1)} \subset \mathcal {B}_{(0)}. \end{aligned}$$

The formal element \(\ell ^k(x,y)\) is supposed to satisfy all the properties of \(\ell _2\) as Gerstenhaber bracket. In other words, \(\ell ^k\) measures the failure of \(\delta _{k-2}\) to be a derivation, \(\ell _k\) is super-commutative, \(\ell _k(\cdot , z)\) is a derivation with respect to the product, and \(\ell ^k\) is bilinear and is trivial if one of the components is 1.

                  This suggests the following definition:
$$\begin{aligned} \begin{aligned} \ell ^k(x,y)&:=\ell ^{\delta _{k-2}}_2(x,y)=\delta _{k-2}(xy)-\delta _{k-2}(x)y-(-1)^{|x|}x \delta _{k-2}(y), \quad x,y \in V_{k-2}, \\ \ell ^k(z,x)&:=(-1)^{|x||z|}\ell ^k(x,z), \quad x,z \in V_{k-1}, \\ \ell ^k(xy, z)&:=(-1)^{|x|} x \ell ^k(y,z)+(-1)^{|y||z|} \ell ^k(x,z) y, \quad x,y,z \in V_{k-1}, \\ \ell ^k(1, x)&:=0,\quad \ell ^k(ax+by,z):=a\ell ^k(x,z) + b\ell ^k(y,z), \quad a, b \in k, \\&\quad x,y,z \in \mathcal {B}_{(k-1)}, \end{aligned} \end{aligned}$$

                    (3.3)
                

for each \(k\ge 1\). This definition (3.3) implies that if \(\delta _{k-2}:\mathcal {B}_{(k-2)}\rightarrow \mathcal {B}_{(k-1)}\) is defined then we can extend the definition of \(\ell ^k(u,v)\) in \(\mathcal {B}_{(k)}\) for any \(u,v \in \mathcal {B}_{(k-1)}\) not only for \(u\in U_{k-1}, v\in V_{k-1}\). Let us give a construction of \(\delta _k\): first, we define
$$\begin{aligned} \delta _0(\theta ):=r, \delta _1(r)=0, \quad \delta _{0}(v):=\delta (v), \quad v \in \mathcal {A}, \end{aligned}$$

and
$$\begin{aligned} \delta _{k}( \ell ^{k}(u, v) ):= & {} -\ell ^{k+1}(\delta _{k-1}(u),v) -(-1)^{|u|} \cdot \ell ^{k+1}(u, \delta _{k-1}(v)), \nonumber \\&\quad \ell ^{k}(u, v) \in U_k, \ k \ge 1. \end{aligned}$$

                    (3.4)
                

This definition (3.4) is motivated by the binary \(L_\infty \)-relation (2.2). Then we use the following relations [with the help of notation (3.3)] inductively
$$\begin{aligned} \begin{aligned} \delta _{k}(u v)&:= \ell ^{k+1}(u,v)+ \delta _{k}(u) v + (-1)^{|u|}u \delta _{k-1}(v), \quad u \in U_k, v \in \mathcal {B}_{(k-1)},\\ \delta _{k}(u u')&:= \ell ^{k+1}(u,u')+ \delta _{k}(u) u' + (-1)^{|u|}u \delta _{k}(u'), \quad u, u' \in U_k=V_k {\setminus } V_{k-1}.\qquad \quad \end{aligned} \end{aligned}$$

                    (3.5)
                

to extend (3.4) and obtain a \(k\)-linear map \(K_{k}: \mathcal {B}_{(k)} \rightarrow \mathcal {B}_{(k+1)}\) for each \(k \ge 0\). This relation (3.5) is motivated by the definition of \(\ell _2^\delta \)-descendant.Footnote 3 This clearly induces a \(k\)-linear operator
$$\begin{aligned} \delta ^\theta :\mathcal {A}^\theta =\mathcal {B}_{(\infty )} \rightarrow \mathcal {A}^\theta =\mathcal {B}_{(\infty )}, \quad \delta ^\theta :=\varinjlim _{k\rightarrow \infty } \delta _k \end{aligned}$$

such that \(\delta ^\theta |_{\mathcal {A}}=\delta \).

                  Now we show that \(\delta ^\theta \circ \delta ^\theta =0\). We use an induction over the index k for \(\mathcal {B}_{(k)}\). If we assume that \(\delta _{k+1} (\delta _k(u))=\delta _{k+1} (\delta _k(v))=0\) for \(u,v \in \mathcal {B}_{(k)}\), then we have
$$\begin{aligned} \delta _{k+1}\left( \delta _k(uv)\right)= & {} \delta _{k+1}\left( \ell ^{k+1}(u,v) +\delta _k(u) v +(-1)^{|u|} u \delta _{k}(v) \right) \nonumber \\= & {} -\ell ^{k+2}(\delta _k(u),v) -(-1)^{|u|} \ell ^{k+2}(u, \delta _k(v)) \nonumber \\&+\delta _{k+1}(\delta _k(u)v) +(-1)^{|u|}\delta _{k+1}(u \delta _{k}(v)) \nonumber \\= & {} \delta _{k+1}(\delta _{k}(u)) v +(-1)^{|u|+1} \delta _k(u) \delta _k(v) \nonumber \\&+(-1)^{|u|} \delta _{k+1}(u) \delta _k(v) +(-1)^{|u|} u \delta _{k+1}(\delta _{k}(v)) \nonumber \\= & {} 0. \end{aligned}$$

                    (3.6)
                

Because \(\delta ^2=\delta _{-1}^2=0\), \((\delta _1 \circ \delta _{0}) (\theta )=\delta _1(r)=0\), the above computation (3.6) shows that \((\delta _1 \circ \delta _0)(x)=0\) for all \(x \in \mathcal {B}_{(0)}\). If we assume that \(\delta _{k}\circ \delta _{k-1}=0\), a similar computation using the inductive \(\ell _2\)-relation (3.4) (in the \(L_\infty \)-algebra relations) shows that \(\delta _{k+1}\circ \delta _{k}=0\). We conclude \(\delta ^\theta \circ \delta ^\theta =0\). It is clear that \(\delta ^\theta |_\mathcal {A}=\delta \) and we thus have a differential \(\delta ^\theta \).

                  Moreover, condition (3.3) implies that (by setting \(n=3\) in (2.3))
$$\begin{aligned} \ell _3^{\delta ^\theta }(x,y,z)=0, \quad x,y,z \in \mathcal {A}^\theta , \end{aligned}$$

which implies that \((\mathcal {A}^\theta , \delta ^\theta , \ell _2^{\delta ^\theta })\) is a GBV algebra such that \(\mathcal {A}\subseteq \mathcal {A}^\theta \).

                  It remains to show that \(H(\mathcal {A}^\theta , \delta ^\theta )\simeq H(\mathcal {A}, \delta )/k\cdot r\) as \(k\)-vector spaces. First, note that \(r = \delta ^\theta (\theta )\) and r is no longer a nontrivial homology class of \((\mathcal {A}^\theta , \delta ^\theta )\). What we have to show is that the introduction of the new formal variables in \(U_n (n=0,1,\cdots )\) do not generate any nontrivial homology class.

                  We begin the argument by showing that
$$\begin{aligned} \text { if }\delta _0(\theta ^m v)=0, v \in \mathcal {A}, m \ge 1,\text { then }v=0. \end{aligned}$$

We divide into two cases according to the parity of the degree of \(\theta \). Assume that \(|\theta |\) is odd so that |r| is even. Then \(\theta ^2=0\) and \(\ell ^1(\theta ,\theta )=0\). We only have to consider
$$\begin{aligned} \delta _0(\theta v)= \ell ^1(\theta ,v) + r v-\theta \delta (v)=0, \end{aligned}$$

which implies that \(\ell ^1(\theta ,v)=0\). We thus have \(v=0\). Now let us assume that \(|\theta |\) is even so that |r| is odd. Then a simple computation confirms that
$$\begin{aligned} \delta _0(\theta )=r, \quad \delta _0(\theta ^m)= \left( \sum _{k=2}^m (k-1)\right) \cdot \theta ^{m-2} \ell ^1(\theta ,\theta ) + m\cdot r \theta ^{m-1}, \quad m \ge 2. \end{aligned}$$

Then the condition
$$\begin{aligned} \delta _0(\theta ^m v)=m\theta ^{m-1}\ell ^1(\theta , v)+\delta _0(\theta ^m) v +\theta ^m \delta (v)=0, \quad m \ge 1, \end{aligned}$$

implies that \(\ell ^1(\theta ,v)=0\) and \(\delta _0(\theta ^m) v=0\), which in turn implies that \(v=0\).

                  In general, we need to show that if \(\delta _m(u v)=0, 0\ne u \in \langle U_m \rangle , v\in \mathcal {B}_{(m-1)}, m \ge 1\) (where \(\langle U_m \rangle \) means the ideal of \(\mathcal {B}_{(m)}\) generated by \(U_m\)), then \(v=0\). We use an induction. Assume that \(\delta _{k-1}(uv)=0\) for \(0\ne u \in \langle U_{k-1}\rangle \) and \(v\in \mathcal {B}_{(k-2)}\) implies that \(v=0\). Consider the condition
$$\begin{aligned} \delta _{k}(u v)= \ell ^{k+1}(u,v)+ \delta _{k}(u) v + (-1)^{|u|}u \delta _{k-1}(v)=0, \quad u \in \langle U_k \rangle , v \in \mathcal {B}_{(k-1)}, \end{aligned}$$

                    (3.7)
                

Since \(\delta _k(u)=\delta _k(\ell ^k(u_k,v_k))=-\ell ^{k+1}(\delta _{k-1}(u_k),v_k) -(-1)^{|u_k|} \ell ^{k+1} (u_k, \delta _{k-1}(v_k))\), condition (3.7) implies that \(u \delta _{k-1}(v)=0\). We thus have \(\delta _{k-1}(v)=0\). The induction hypothesis implies that \(v =0\), unless \(v \in \mathcal {B}_{(k-2)}\). If \(v \in \mathcal {B}_{(k-2)}\), then \(\delta _{(k-1)}(v)=\delta _{(k-2)}(v)\)=0. We can continue this way to conclude that \(v \in \mathcal {A}\cap \hbox {Ker}\;(\delta )\). Then (3.7) says that
$$\begin{aligned} \ell ^{k+1}(u,v)+ \delta _{k}(u) v=0, \quad u \in U_k, v\in \mathcal {A}=\mathcal {B}_{(-1)}, \end{aligned}$$

which implies that \(\delta _{k}(u) v=0\). Thus \(v=0\). We therefore conclude that \(\delta _m\)-closed elements in \(\mathcal {A}^\theta \) for any \(m \ge 0\) should be zero, which is exactly what we want. \(\square \)

                Let Q be a derivation with respect to the multiplication of a GBV-algebra \((\mathcal {A},\delta ,\ell _2^\delta )\) such that
	
                    (1)
                    
                      \((\mathcal {A},Q)\) is a CDGA,

                    
                  
	
                    (2)
                    
                      \(Q\delta +\delta Q=0\),

                    
                  
	
                    (3)
                    
                      \((\ker Q,\delta )\hookrightarrow (\mathcal {A},\delta )\) induces an isomorphism \(H_*(\ker Q,\delta )\cong H_*(A,\delta ).\)

                    
                  

If a GBV algebra \((\mathcal {A}, \delta , \ell _2^\delta )\) is equipped with a derivation Q which satisfies the first two conditions above, then \((\mathcal {A}, Q, \delta )\) is called a dGBV algebra.Footnote 4 The third condition is used to construct a formal Frobenius manifold structure from a dGBV algebra (see the section 6 of [9]).

                  Proposition 3.2

                  In the case of GBV algebras, we can extend Q to \({Q}^\theta \) so that
	
                      (1)
                      
                        \(({\mathcal {A}}^\theta ,{Q}^\theta )\) is a CDGA,

                      
                    
	
                      (2)
                      
                        \({Q}^\theta {\delta }^\theta +{\delta }^\theta {Q}^\theta =0\),

                      
                    
	
                      (3)
                      
                        \((\ker {Q}^\theta ,{\delta }^\theta )\hookrightarrow ({\mathcal {A}}^\theta ,{\delta }^\theta )\) induces an isomorphism \(H_*(\ker {Q}^\theta ,{\delta }^\theta )\cong H_*({\mathcal {A}}^\theta ,{\delta }^\theta )\).

                      
                    


                
                  Proof

                  The extension \((\mathcal {A}^\theta ,\delta ^\theta )\) is given by Lemma 3.1. We may assume that \(r\in \ker Q\) via the isomorphism \(H_*(\ker Q,\delta )\cong H_*(A,\delta )\). Then we define \(Q^\theta \) on \(\mathcal {A}^\theta \) by the following rules
$$\begin{aligned} Q^\theta (\theta )= & {} 0, ~Q^\theta (a\cdot b)=Q^\theta (a)\cdot b +(-1)^{|a|}aQ^\theta (b),\\ Q^\theta \ell _2^{\delta ^\theta }(a,b)= & {} -\ell _2^{\delta ^\theta }(Q^\theta (a),b)-(-1)^{|a|}\ell _2^{\delta ^\theta }(a,Q^\theta (b)). \end{aligned}$$

It is obvious that \(Q^\theta \) and \(\delta ^\theta \) satisfy the condition 1 and 2. Since \(\ker Q^\theta \cap \ker \delta ^\theta \) contains \(\ker Q\cap \ker \delta \), the induced morphism \(H_*(\ker {Q}^\theta ,{\delta }^\theta )\rightarrow H_*({A}^\theta ,{\delta }^\theta )\) is surjective. Since \(\ker Q^\theta \) is a subalgebra of \(\mathcal {A}^\theta \) containing \(\theta \) and equipped with \(\delta ^\theta \), Lemma 3.1 implies that
$$\begin{aligned} H_*(\ker Q^\theta ,\delta ^\theta )\cong H_*(\ker Q,\delta )/k\cdot r\cong H_*(\mathcal {A},\delta )/k\cdot r. \end{aligned}$$

\(\square \)

                
                  Remark 3.3

                  Compare Lemma 3.1 to Tate’s theorem (Theorem 2, [1]). Before killing a nontrivial (co)homology class r, Tate assumed that r was a skew non-zerodivisor in his (co)homology algebra. In this paper, such an assumption is not needed for two reasons.
	
                      1.
                      
                        \(H(\mathcal {A},\delta )\) does not inherit an algebra structure from \(\mathcal {A}\) : for \(a,b\in \ker \delta \), \(\ell _2^\delta (a,b)=\delta (ab)-\delta (a)b\pm a\delta (b)\ne 0\) and \(ab\not \in \ker \delta \) in general. This is why we treat \(H(\mathcal {A},\delta )\) and \(H(\mathcal {A}^\theta ,\delta ^\theta )\) as vector spaces.

                      
                    
	
                      2.
                      
                        In [1], the assumption is required to show that new variables do not generate new (co)cycles. In this paper, this annihilation property follows from the failure of Leibniz’s rule. This is explained in the final step in the proof of Lemma 3.1.

                      
                    


                3.3 The general case
The goal here is to prove Theorem 1.2 and we will achieve this via the key Lemma 3.4. Let \((\mathcal {A},\delta )\) be an object of the category \(\mathfrak {C}\) such that \(\mathcal {A}\) is non-negatively graded i.e. \(\mathcal {A}=\bigoplus _{m\ge 0}\mathcal {A}_m\), and \(\ell ^\delta _{M+1}=0\) for some \(M\ge 1\). The \(M=2\) case was done in Sect. 3.2. In order to describe an explicit formula for the general case, we use the notion of (a homology version of) a shifted \(L_\infty \)-algebra using partitions (see Definition 2.1).
Assume that \(\mathcal {A}\) is a finitely generated \(\mathbb {Z}\)-graded \(k\)-algebra whose generators are \(1, q_1, \ldots , q_N\) and \((\mathcal {A},\delta )\) has a non-trivial cohomology class r of degree \(\ge 1\). We introduce a formal variable \(\theta \) corresponding to r such that \(|\theta |-1=|r|\). Let
$$\begin{aligned} \begin{aligned} U_{-1}&=\{q_1, \ldots , q_{N} \}, \\ U_{0}&=\{\theta \}. \end{aligned} \end{aligned}$$

We define a set of formal variables \(\ell _m^n(u_1, \ldots , u_m)\) of degree \(\sum _{i=1}^m |u_i| -1\) in an inductive manner as follows:
$$\begin{aligned} U_n= & {} \{\ell _m^n(u_1, u_2, \ldots , u_m): u_1 \in U_{n-1}, u_2, \ldots , u_m \in V_{n-1}:=U_{n-1} \sqcup \cdots \sqcup U_{-1}, \\&2 \le m \le M \}, \end{aligned}$$

for \(M\ge 2\) and for each \(n \ge 1\).Footnote 5
For example, we have
$$\begin{aligned} U_1= & {} \{\ell _m^1(u_1,u_2, \ldots , u_m): u_1 \in U_{0}, u_2 \ldots , u_m \in U_{0} \sqcup U_{-1}, 2 \le m \le M \}, \\ U_2= & {} \{\ell _m^2(u_1, u_2, \ldots , u_m): u_1 \in U_1, u_2, \ldots , u_m \in U_1\sqcup U_0 \sqcup U_{-1},2 \le m \le M \}. \end{aligned}$$

We define a \(k\)-algebra
$$\begin{aligned} \mathcal {A}_{(n)}:= \mathcal {A}\otimes _kk[U_n \sqcup U_{n-1}\sqcup \cdots \sqcup U_{0}]=\mathcal {A}[U_n \sqcup U_{n-1}\sqcup \cdots \sqcup U_{0}], \end{aligned}$$

i.e. \(\mathcal {A}_{(n)}\) is the symmetric tensor product of \(\mathcal {A}\) and the (super-)symmetric \(k\)-tensor algebra of the \(k\)-vector space whose basis is given by \(U_n \sqcup U_{n-1}\sqcup \cdots \sqcup U_{0}\). This clearly defines an inductive system \(\mathcal {A}_{(n)} \rightarrow \mathcal {A}_{(n+1)}\) of associative and super-commutative \(k\)-algebras. Let
$$\begin{aligned} \mathcal {A}_{(\infty )}:=\varinjlim _{n \rightarrow \infty } \mathcal {A}_{(n)}. \end{aligned}$$

Let \(I_n\) (respectively, \(I_{\infty }\)) be the ideal of \(\mathcal {A}_{(n)}\) (respectively, \(\mathcal {A}_{(\infty )}\)) generated by
$$\begin{aligned} \ell _m^{k+1}(x_{\sigma (1)},\ldots ,x_{\sigma (m)}) -{{\mathrm{sgn}}}(\sigma (x_1,\ldots ,x_m)) \ell _m^{k+1}(x_1, \ldots , x_m), \quad x_1, \ldots , x_m \in U_k, \end{aligned}$$

for \(k=0, \ldots , n-1,\) (respectively, \(k=0,1, \ldots ,\)) and \(2 \le m \le M\). Let us define
$$\begin{aligned} \mathcal {B}_{(n)}:=\mathcal {A}_{(n)}/I_n, \quad \mathcal {A}^\theta :=\mathcal {B}_{(\infty )}:=\mathcal {A}_{(\infty )}/I_{\infty }. \end{aligned}$$

                    (3.8)
                

We define \(\ell _m^k(x_1, \ldots , x_m):=\ell ^{\delta _{k-2}}_m(x_1, \ldots , x_m)\) for \(x_1, \ldots , x_m \in V_{k-2}\), and use the following definition:
$$\begin{aligned}&\ell _m^k(x_{\sigma (1)},\ldots ,x_{\sigma (m)}) :={{\mathrm{sgn}}}(\sigma (x_1,\ldots ,x_m)) \ell _m^k(x_1, \ldots , x_m),\nonumber \\&\quad \ell _{m-1}^k(x_1,\ldots , x_{m-2}, x_{m-1}\cdot x_m):= \ell _m^k(x_1, \ldots , x_{m-1}, x_m)\nonumber \\&\quad +\ell _{m-1}^k(x_1, \ldots , x_{m-1}) \cdot x_{m} \nonumber \\&\quad +(-1)^{|x_{m-1}|(1+|x_1|+\cdots + |x_{m-2}|)} x_{m-1}\cdot \ell _{m-1}^k(x_1, \ldots , x_{m-2}, x_m), \end{aligned}$$

                    (3.9)
                

for \(x_1, \ldots , x_m\in V_{k-1}\), and
$$\begin{aligned} \begin{aligned} \ell ^k_m(ax_1+bx_1', x_2, \ldots ,x_m)&:=a\ell ^k_m(x_1, x_2, \ldots ,x_m) +b\ell ^k_m(x_1', x_2, \ldots ,x_m),\\ \ell ^k_2(1,x_1, \ldots , x_m)&:=0, \end{aligned} \end{aligned}$$

for \(a,b\in k\) and \(x_1, x_1',x_2, \ldots , x_m \in \mathcal {B}_{(k-1)}\).
This Definition (3.9) implies that if \(\delta _{k-2}:\mathcal {B}_{(k-2)}\rightarrow \mathcal {B}_{(k-1)}\) is defined then we can extend the definition of \(\ell _m^k\) to cover \(\ell ^k_{m}(u_1,\cdots ,u_m)\) in \(\mathcal {B}_{(k)}\) for any \(u_1,\ldots , u_m \in \mathcal {B}_{(k-1)}\) not only for \(u_1\in U_{k-1}, u_2, \ldots , u_m \in V_{k-1}\). For example, we have that
$$\begin{aligned} \begin{aligned} \ell ^k_2(xy, z)&:=\ell ^k_3(x,y,z)+(-1)^{|x|} x \ell ^k_2(y,z)+(-1)^{|y||z|} \ell ^k_2(x,z) y,\\ \ell ^k_3(xy,z,u)&:=\ell ^k_4(x,y,z,u)+(-1)^{|x|} x\ell ^k_3(y,z,u)+(-1)^{|y||z|+|y||u|}\ell ^k_3(x,z,u)y. \end{aligned} \end{aligned}$$

Let
$$\begin{aligned} \mathcal {B}_{(-1)}:=\mathcal {A}, \quad \delta _{-1}=\delta :\mathcal {B}_{(-1)} \rightarrow \mathcal {B}_{(-1)} \subset \mathcal {B}_{(0)}. \end{aligned}$$

Let us give a construction of a \(k\)-linear operator \(\delta _k:\mathcal {B}_{(k)} \rightarrow \mathcal {B}_{(k+1)}\) (we also denote \(\delta _k\) by \(\ell ^{k+1}_1\) below); first, we define
$$\begin{aligned} \delta _0(\theta ):=r, \delta _1(r)=0, \quad \delta _{0}(v):=\delta (v), \quad v \in \mathcal {A}, \end{aligned}$$

and
$$\begin{aligned} \begin{aligned}&\delta _{k}( \ell _m^k(x_1, \ldots , x_m) ):\\&\quad = -\sum _{\begin{array}{c} \pi \in P(n)\\ |B_i|=n-|\pi |+1\ne n \end{array}} \epsilon (\pi ,i) \ell ^{k+1}_{|\pi |}(x_{B_1}, \ldots , x_{B_{i-1}}, \ell ^k(x_{B_i}), x_{B_{i+1}}, \ldots , x_{B_{|\pi |}}), \end{aligned} \end{aligned}$$

                    (3.10)
                

for \(m \ge 0\) and \(k=0, 1,2, \ldots .\) Here we use the the following notation:
$$\begin{aligned} \ell ^{k}(x_{B})= & {} \ell ^{k}_r(x_{j_1}, \ldots , x_{j_r}) \text { if } B=\{j_1, \ldots , j_r\}, \quad \ell _1^k=K_{k-1},\\ \epsilon (\pi , i)= & {} \epsilon (\pi ) (-1)^{|x_{B_1}|+\cdots + |x_{B_{i-1}}|}, \end{aligned}$$

The equality (3.10) is simply the \(L_\infty \)-algebra relation in Definition 2.1.Footnote 6 Then we use the following relations (with a help of the definition (3.9)) inductively
$$\begin{aligned} \begin{aligned} \delta _{k}(u v)&:= \ell ^{k+1}_2(u,v)+ \delta _{k}(u) v + (-1)^{|u|}u \delta _{k-1}(v), \quad u \in U_k, v \in \mathcal {B}_{(k-1)},\\ \delta _{k}(u u')&:= \ell ^{k+1}_2(u,u')+ \delta _{k}(u) u' + (-1)^{|u|}u \delta _{k}(u'), \quad u, u' \in U_k=V_k {\setminus } V_{k-1}. \end{aligned} \end{aligned}$$

to extend (3.10) and obtain a \(k\)-linear map \(\delta _{k}: \mathcal {B}_{(k)} \rightarrow \mathcal {B}_{(k+1)}\) for each \(k \ge 0\). This induces a \(k\)-linear operator
$$\begin{aligned} \delta ^\theta :\mathcal {A}^\theta =\mathcal {B}_{(\infty )} \rightarrow \mathcal {A}^\theta =\mathcal {B}_{(\infty )}, \quad \delta ^\theta :=\varinjlim _{k\rightarrow \infty } \delta _k \end{aligned}$$

such that \(\delta ^\theta |_{\mathcal {A}}=K\).

                  Lemma 3.4

                  The tuple \((\mathcal {A}^\theta , \delta ^\theta ):=(\mathcal {A}_\infty , \delta _\infty )\) is an object of \(\mathfrak {C}\) such that \(\mathcal {A}\subset \mathcal {A}^\theta \), and
$$\begin{aligned} \ell _{M+1}^{\delta ^\theta }(x_1, \ldots , x_{M+1})= & {} 0, \quad x_1, \ldots , x_{M+1} \in \mathcal {A}^\theta , \\ H(\mathcal {A}^\theta , \delta ^\theta )\simeq & {} H(\mathcal {A}, \delta )/k\cdot r, \end{aligned}$$

as \(k\)-vector spaces.

                
                  Proof

                  The first thing to show is that \(\delta ^\theta \) is a differential of degree 1. As in the GBV case, we can use an induction over the index k for \(\mathcal {B}_{(k)}\).

                  If we assume that \(\delta _{k+1} (\delta _k(u))=\delta _{k+1} (\delta _k(v))=0\) for \(u,v \in \mathcal {B}_{(k)}\), then the same computation (the term \(\ell ^k(u,v)\) replaced by \(\ell ^k_2(u,v)\)) as (3.6) implies that \(\delta _{k+1}\left( \delta _k(uv)\right) =0\) [the higer \(L_\infty \)-terms like \(\ell _3^k, \ell _4^k,\ldots , \) do not appear in (3.6)]. Because \(\delta ^2=\delta _{-1}^2=0\), \((\delta _1 \circ \delta _{0}) (\theta )=\delta _1(r):=\delta (r)=0\), the equality (3.6) shows that \((\delta _1 \circ \delta _0)(x)=0\) for all \(x \in \mathcal {B}_{(0)}\). On the other hand, if we assume that \(\delta _{k}\circ \delta _{k-1}=0\), a standard computation using the inductive \(L_\infty \)-relation (3.10) shows that \(\delta _{k+1}\circ \delta _{k}=0\). Hence we have \(\delta ^\theta \circ \delta ^\theta =0\). It is clear that \(\delta ^\theta |_\mathcal {A}=\delta \) and we thus have a differential \(\delta ^\theta \).

                  Moreover, condition (3.9) implies that (setting \(n=M+1\) in (2.3))
$$\begin{aligned} \ell _{M+1}^{\delta ^\theta }(x_1, \ldots , x_{M+1})=0, \quad x_1, \ldots , x_{M+1} \in \mathcal {A}^\theta . \end{aligned}$$

It remains to show that \(H(\mathcal {A}^\theta , \delta ^\theta )\simeq H(\mathcal {A}, \delta )/k\cdot r\) as \(k\)-vector spaces. First, note that \(r = \delta ^\theta (\theta )\) and r is no longer a nontrivial homology class of \((\mathcal {A}^\theta , \delta ^\theta )\). As in the GBV case, what we have to show is that new formal variables \(U_n (n=0,1,\ldots )\) do not generate any nontrivial homology classes.

                  The arguments are very similar to the GBV case. We begin the argument by showing that
$$\begin{aligned} \text { if }\delta _0(\theta ^m v)=0, \quad v \in \mathcal {A}, m \ge 1, \text{ then } v=0. \end{aligned}$$

We divide into two cases according to the parity of the degree of \(\theta \). Assume that \(|\theta |\) is odd so that |r| is even. Then \(\theta ^2=0\) and \(\ell ^1(\theta ,\theta )=0\). We only have to consider
$$\begin{aligned} \delta _0(\theta v)= \ell ^1_2(\theta ,v) + r v-\theta \delta (v)=0, \end{aligned}$$

which implies that \(\ell ^1(\theta ,v)=0\). We thus have \(v=0\). Now let us assume that \(|\theta |\) is even so that |r| is odd. Then a simple computation confirms that
$$\begin{aligned} \delta _0(\theta )= & {} r \\ \delta _0(\theta ^m)= & {} \ell ^1_m(\theta , \ldots , \theta )+a_1\theta \ell ^1_{m-1}(\theta , \ldots , \theta )+\cdots \\&+ a_{m-2}\cdot \theta ^{m-2} \ell ^1_2(\theta ,\theta ) + m\cdot r \theta ^{m-1}, \quad m \ge 2, \end{aligned}$$

for some \(a_1, \ldots , a_{m-2} \in \mathbb {Z}\) (set \(\ell ^1_m(\theta , \ldots , \theta )=0\) if \(m \ge M+1\)). Then the condition
$$\begin{aligned} \delta _0(\theta ^m v)=\ell ^1_2(\theta ^m, v)+\delta _0(\theta ^m) v +\theta ^m \delta (v)=0, \quad m \ge 1, \end{aligned}$$

implies that \(\ell ^1_2(\theta ^m,v)=0\) and \(\delta _0(\theta ^m) v=0\), which in turn implies that \(v=0\).

                  In general, we need to show that if \(\delta _m(u v)=0, 0\ne u \in \langle U_m \rangle , v\in \mathcal {B}_{(m-1)}, m \ge 1\) (where \(\langle U_m \rangle \) means the ideal of \(\mathcal {B}_{(m)}\) generated by \(U_m\)), then \(v=0\). The argument for this is exactly the same as the GBV case (just replace \(\ell _2(u,v)\) by \(\ell _2^{k+1}(u,v)\)). We therefore conclude that \(\delta _m\)-closed elements in \(\mathcal {A}^\theta \) for any \(m \ge 0\) should be zero. \(\square \)

                Theorem 1.2 follows by applying Lemma 3.4, in the case \((\mathcal {A}, \delta )\)\(=\)\(( E(\mathfrak {g}_M;\rho _M),\)\( \delta _\rho )\), inductively for any non-trivial homology class r of degree bigger than or equal to 1.


4 Applications
We assume that \(k=\mathbb {C}\) from now on. Let \(\mathbf {P}^n\) be the projective n-space over \(k\). Let V be a projective algebraic variety of dimension m in \(\mathbf {P}^n\).

                Definition 4.1

                Let \(H^k(V, k)\) be kth singular cohomology of V. An object \((\mathcal {A}, \delta ) \in \hbox {Ob}(\mathfrak {C})\) is called a homotopy enhancement of \(H^k(V, k)\), if \(H(\mathcal {A},\delta )\) is concentrated in degree 0 and is isomorphic to \(H^k(V, k)\). Moreover, if \((\mathcal {A},\delta , \ell _2^\delta )\) is a GBV algebra, then we call \((\mathcal {A}, \delta )\) a BV homotopy enhancement.

              Note that the binary product is responsible for the word enhancement. Such a homotopy enhancement plays an important role in analyzing the period matrices of deformations of a projective algebraic variety. In [6], the authors found a homotopy enhancement of the primitive middle-dimensional cohomology \(H^{n-1}_{{\text {prim}}}(V,k)\), when V is a smooth projective hypersurface in \(\mathbf {P}^n\). This result is generalized to smooth projective complete intersections in [7] and singular projective hypersurfaces in [10]. The main application of the current article is the following.

                Corollary 4.2

                Let X be a smooth projective complete intersection of dimension m. Then there is a BV homotopy enhancement of the primitive middle-dimensional cohomology \(H^{m}_{{\text {prim}}}(X,k)\) of X.

              Our method to achieve such a resolution of \(H^{m}_{{\text {prim}}}(X,k)\) can be summarized as follows:
	
                  Attach to X a certain Lie algebra representation \(\rho _X\) originating from quantum mechanics.

                
	
                  Construct the Chevalley–Eilenberg chain complex \((\mathcal {A}, \delta )_X\) associated to \(\rho _X\).

                
	
                  Apply Theorem 1.2 to get a resolution \((\widetilde{\mathcal {A}},\widetilde{\delta })_X\) which provides a GBV algebra.

                

Let \(X \subseteq \mathbb {P}^n\) be a smooth projective complete intersection defined by \(G_1, \ldots , G_k\) so that \(m=n-k\). We briefly review the construction of \(\rho _X\). We introduce formal variables \(y_1, \ldots , y_k\) corresponding to \(G_1, \ldots , G_k\). Let \(N=n+k+1\) and
$$\begin{aligned} A := {\mathbb {C}}[q_\mu ]_{\mu =1,\ldots , N} \end{aligned}$$

where \(q_1=y_1, \ldots , q_k=y_k\) and \(q_{k+1}=x_0, \ldots , q_N=x_{n}\). We consider the Dwork potential
$$\begin{aligned} S(\underline{q}) := \sum _{\ell =1}^k y_\ell \cdot G_{\ell }(\underline{x}). \end{aligned}$$

Let \(\mathfrak {g}\) be an abelian Lie algebra of dimension N. Let \(\alpha _{1}, \alpha _2, \ldots , \alpha _{N}\) be a \({\mathbb {C}}\)-basis of \(\mathfrak {g}\). We associate a Lie algebra representation \(\rho _{X}\) on A of \(\mathfrak {g}\) as follows:
$$\begin{aligned} \rho _i:=\rho _X(\alpha _i) := \frac{\partial }{\partial {q_i}}+\frac{\partial { S(\underline{q}) }}{\partial {q_i}}, \text { for }i=1, 2, \ldots , N \end{aligned}$$

We extend this \({\mathbb {C}}\)-linearly to get a map \(\rho _X: \mathfrak {g}\rightarrow {{\mathrm{End}}}_{{\mathbb {C}}}(A)\). This is clearly a Lie algebra representation of \(\mathfrak {g}\). Then we consider the Chevalley–Eilenberg complex\((\mathcal {A}_{\rho _X}, \delta _{\rho _X})\) associated to \(\rho _X\), which computes the Lie algebra homology of \(\rho _X\), i.e. \(H_i(\mathcal {A}_{\rho _X}, \delta _{\rho _X}) \simeq H_i(\rho _X, A)\). The \(\mathbb {Z}\)-graded super-commutative algebra \(\mathcal {A}_{\rho _X}\) and differentials \(\delta _{\rho _X}\) and \(Q_{\rho _X}\) are given explicitly as follows:
$$\begin{aligned} \mathcal {A}:=\mathcal {A}_{\rho _X}= & {} {\mathbb {C}}[\underline{q}][\underline{\eta }]={\mathbb {C}}[q_{1}, q_2, \ldots , q_N][\eta _{1},\eta _2, \ldots , \eta _N], \\ \delta :=\delta _{\rho _X}= & {} \sum _{i=1}^N \left( \frac{\partial {S(\underline{q})}}{\partial {q_i}} + \frac{\partial }{\partial {q_i}}\right) \frac{\partial }{\partial {\eta _i}}:\mathcal {A}\rightarrow \mathcal {A},\\ Q:=Q_{\rho _X}= & {} \sum _{i=1}^N \frac{\partial {S(\underline{q})}}{\partial {q_i}} \frac{\partial }{\partial {\eta _i}}: \mathcal {A}\rightarrow \mathcal {A}. \end{aligned}$$

Note that \(\eta _i \cdot \eta _j = - \eta _j \cdot \eta _i\), which implies that \(\eta _i^2 =0\). Since \(\frac{\partial {S(y, \underline{x})}}{\partial {q_i}} \frac{\partial }{\partial {\eta _i}}\) is a differential operator of order 1, the differential Q is a derivation of the product of \(\mathcal {A}\). Thus \((\mathcal {A}, Q)\) is a CDGA (commutative differential graded algebra). But K is not a derivation of the product, because the differential operator \(\frac{\partial }{\partial {q_i}} \frac{\partial }{\partial {\eta _i}} \) has order 2. We also introduce the \({\mathbb {C}}\)-linear map
$$\begin{aligned} \varDelta := \delta -Q=\sum _{i=1}^N \frac{\partial }{\partial {q_i}} \frac{\partial }{\partial {\eta _i}}:\mathcal {A}\rightarrow \mathcal {A}. \end{aligned}$$

Note that \(\varDelta \) is a also a differential of degree \(-\,1,\) i.e. \(\varDelta ^2=0\). Since \(Q^2=\varDelta ^2=\delta ^2=0\), we get
$$\begin{aligned} \varDelta Q +Q \varDelta =0. \end{aligned}$$

We have
$$\begin{aligned} 0 \rightarrow \mathcal {A}^{N} \buildrel \delta \over \longrightarrow \mathcal {A}^{N-1} \buildrel \delta \over \longrightarrow \cdots \buildrel \delta \over \longrightarrow \mathcal {A}^0 \rightarrow 0. \end{aligned}$$

The triple \((\mathcal {A}, \delta , \ell _2^\delta )\) is a GBV (Gerstenhaber–Batalin–Vilkovisky) algebra over \({\mathbb {C}}\), i.e. \((\mathcal {A}, \delta )\) satisfies all the assumptions of Theorem 1.1. In particular, we have \(\ell _3^\delta =\ell _4^\delta =\cdots = 0\). Thus we apply our main theorem 1.1 to get a resolution \((\widetilde{\mathcal {A}}, \widetilde{\delta })_X \in \hbox {Ob}(\mathfrak {C})\) whose cohomology vanishes except for \(H_0(\widetilde{\mathcal {A}}, \widetilde{\delta })=H_0(\mathcal {A},\delta )\simeq H^{n-k}_{{\text {prim}}}(X,\mathbb {C})\).



                                

                        
                    

                    Notes
	Characteristic zero assumption is needed, since we will deal with \(L_\infty \)-algebras and have to divide by n!.


	In this article, we use the homology version of the shifted \(L_\infty \)-algebra.


	For example, we have
$$\begin{aligned} \delta _0(\theta ^2)= & {} \ell ^1(\theta ,\theta )+r \theta +(-1)^{|\theta |} \theta r, \\ \delta _0(\theta ^3)= & {} \ell ^1(\theta ^2, \theta )+ \delta _0(\theta ^2) \theta + \theta ^2 r =(-1)^{|\theta |}\theta \ell ^1(\theta ,\theta ) + (-1)^{|\theta |^2}\ell ^1(\theta ,\theta ) \theta +\delta _0(\theta ^2) \theta + \theta ^2 r, \end{aligned}$$

and \(\delta _0:\mathcal {A}_0 \rightarrow \mathcal {A}_1\) is defined inductively by
$$\begin{aligned} \delta _0(\theta ^m v)=\ell ^1(\theta ^m, v)+\delta _0(\theta ^m) v +(-1)^{m|\theta |}\theta ^m \delta _0(v), \quad v\in \mathcal {B}_{(0)}, m \ge 0, \end{aligned}$$

where \(\ell (\theta ^m,v) \in \mathcal {B}_{(1)}\) is defined by using (3.3).


	If we define \([x \bullet y]:=(-1)^{|x|} \ell _2^\delta (x,y)\), then \((\mathcal {A}, Q, \delta , [\bullet ])\) is a dGBV algebra in the sense of [9].


	If M were 1, then \((\mathcal {A},\delta )\) is a CDGA (commutative differential graded \(k\)-algebra) and we may not need \(U_1, U_2, \ldots \). The set \(U_0\) is enough to kill the cohomology class r.


	For example, the \(m=3\) case means that
$$\begin{aligned} K_{k}\ell _3^k(x_1,x_2,x_3)= & {} \ell _2^{k+1}(\ell _2^k(x_1,x_2), x_3) + (-1)^{|x_1|} \ell _2^{k+1}(x_1, \ell _2^k(x_2, x_3)) \\&+(-1)^{(|x_1|+1)|x_2|}\ell _2^{k+1}(x_2, \ell _2^k(x_1,x_3))+\ell _3^{k+1}(K_{k-1}x_1, x_2, x_3)\\&+ (-1)^{|x_1|} \ell _3^{k+1}(x_1, K_{k-1}x_2, x_3) +(-1)^{|x_1|+|x_2|}\ell _3^{k+1}(x_1,x_2,K_{k-1}x_3). \end{aligned}$$
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