Journal of Homotopy and Related Structures

, Volume 13, Issue 3, pp 599–633 | Cite as

A higher homotopic extension of persistent (co)homology

  • Estanislao HerscovichEmail author


Our objective is to show a possibly interesting structure of homotopic nature appearing in persistent (co)homology. Assuming that the filtration of a simplicial set embedded in \({\mathbb {R}}^{n}\) induces a multiplicative filtration on the dg algebra of simplicial cochains, we use a result by Kadeishvili to get a unique \(A_{\infty }\)-algebra structure on the complete persistent cohomology of the filtered simplicial set. We then construct of a (pseudo)metric on the set of all barcodes of all cohomological degrees enriched with the \(A_{\infty }\)-algebra structure stated before, refining the usual bottleneck metric, and which is also independent of the particular \(A_{\infty }\)-algebra structure chosen. We also compute this distance for some basic examples. As an aside, we give a simple proof of a result relating the barcode structure between persistent homology and cohomology, that was observed by de Silva, Morozov, and Vejdemo-Johansson under some restricted assumptions which we do not suppose.


Persistent homology dg algebras \(A_{\infty }\)-algebras Bottleneck metric 

Mathematics Subject Classification

16E45 16W70 18G55 55U10 


  1. 1.
    Anderson, F.W., Fuller, K.R.: Rings and categories of modules, 2nd edn. Graduate Texts in Mathematics, vol. 13. Springer, New York (1992)CrossRefGoogle Scholar
  2. 2.
    Belchí, F., Murillo, A.: A1-persistence. Appl. Algebra Eng. Commun. Comput. 26(1–2), 121–140 (2015) (Special issue in Computational and Applied topology) Google Scholar
  3. 3.
    Blumberg, A.J., Gal, I., Mandell, M.A., Pancia, M.: Robust statistics, hypothesis testing, and confidence intervals for persistent homology on metric measure spaces. Found. Comput. Math. 14(4), 745–789 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry, Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence (2001)Google Scholar
  5. 5.
    Burde, G., Zieschang, H., Heusener, M.: Knots, Third, fully revised and extended edition, De Gruyter Studies in Mathematics, vol. 5. De Gruyter, Berlin (2014)Google Scholar
  6. 6.
    Cagliari, F., Ferri, M., Pozzi, P.: Size functions from a categorical viewpoint. Acta Appl. Math. 67(3), 225–235 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Crawley-Boevey, W.: Decomposition of pointwise finite-dimensional persistence modules. J. Algebra Appl. 14(5), 1550066 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    de Silva, V., Morozov, D., Vejdemo-Johansson, M.: Persistent cohomology and circular coordinates. Discrete Comput. Geom. 45(4), 737–759 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    de Silva, V., Morozov, D., Vejdemo-Johansson, M.: Dualities in persistent (co)homology. Inverse Probl. 27(12), 124003 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Deza, M.M., Deza, E.: Encyclopedia of distances, 2nd edn. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Edelsbrunner, H., Harer, J.: Persistent homology—a survey. In: Surveys on discrete and computational geometry, Contemp. Math., vol. 453, pp. 257–282. Amer. Math. Soc., Providence (2008)Google Scholar
  12. 12.
    Edelsbrunner, H., Harer, J.L.: Computational topology. An introduction. American Mathematical Society, Providence (2010)Google Scholar
  13. 13.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002) (Discrete and computational geometry and graph drawing (Columbia, SC, 2001)) Google Scholar
  14. 14.
    Félix, Y., Halperin, S., Thomas, J.-C.: Rational homotopy theory. Graduate Texts in Mathematics, vol. 205. Springer, New York (2001)CrossRefGoogle Scholar
  15. 15.
    Massimo F.: Persistent topology for natural data analysis—a survey. arXiv:1706.00411
  16. 16.
    Freyd, P.J.: Functor theory. ProQuest LLC, Thesis (Ph.D.), Princeton University, Ann Arbor (1960)Google Scholar
  17. 17.
    Frosini, P.: A distance for similarity classes of submanifolds of a Euclidean space. Bull. Austral. Math. Soc. 42(3), 407–416 (1990)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Frosini, Patrizio, Landi, Claudia: Size theory as a topological tool for computer vision. Pattern Recognit. Image Anal. 9, 596–603 (1999)Google Scholar
  19. 19.
    Hatcher, A.: Algebraic topology. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  20. 20.
    Aubrey, HB: Persistent Cohomology Operations. ProQuest LLC Thesis (Ph.D.), Duke University, Ann Arbor (2011)Google Scholar
  21. 21.
    He, J.-W., Di-Ming, L.: Higher Koszul algebras and A-infinity algebras. J. Algebra 293(2), 335–362 (2005)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Herscovich, E.: Using torsion theory to compute the algebraic structure of Hochschild (co)homology. Homol. Homotopy Appl. (accepted)Google Scholar
  23. 23.
    Herscovich, E.: Spectral sequences associated to deformations. J. Homotopy Relat. Struct. 12(3), 513–548 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Himmelberg, C.J.: Quotients of completely regular spaces. Proc. Am. Math. Soc. 19, 864–866 (1968)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kadeišvili, T.V.: On the theory of homology of fiber spaces. Uspekhi Mat. Nauk 35(3), (213), 183–188 (1980, Russian) (International Topology Conference (Moscow State Univ., Moscow, 1979)) Google Scholar
  26. 26.
    Kadeishvili, T.V.: The algebraic structure in the homology of an A(1)-algebra. Soobshch. Akad. Nauk Gruzin. SSR 108(2), 249–252(1982) (Russian, with English and Georgian summaries, 1983) Google Scholar
  27. 27.
    Lefèvre-Hasegawa, K.: Sur les A1-catégories. Thesis (Ph.D.), Université Paris 7, Paris (2003). arXiv:math/0310337 (French). Corrections at:
  28. 28.
    Lu, D.-M., Palmieri, J.H., Wu, Q.-S., Zhang, J.J.: A-infinity structure on Ext-algebras. J. Pure Appl. Algebra 213(11), 2017–2037 (2009)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Massey, W.S.: Exact couples in algebraic topology. I, II. Ann. Math 56(2), 363–396 (1952)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Massey, W.S.: Higher order linking numbers. In: Conf. on Algebraic Topology (Univ. of Illinois at Chicago Circle, Chicago, Ill., 1968), Univ. of Illinois at Chicago Circle. Chicago, pp. 174–205 (1969)Google Scholar
  31. 31.
    Massey, W.S.: Higher order linking numbers. J. Knot Theory Ramif. 7(3), 393–414 (1998)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Matschke, B.: Successive spectral sequences (2013). arXiv:1308.3187
  33. 33.
    Mitchell, B.: Rings with several objects. Adv. Math. 8, 1–161 (1972)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Prouté, A.: A1-structures. Modèles minimaux de Baues-Lemaire et Kadeishvili et homologie des fibrations. Repr. Theory Appl. Categ. 21, 1–99 (2011, French) (Reprint of the 1986 original; With a preface to the reprint by Jean-Louis Loday) Google Scholar
  35. 35.
    Robins, V.: Towards computing homology from finite approximations. In: Proceedings of the 14th Summer Conference on General Topology and its Applications, Brookville, 1999, pp. 503–532 (2001)Google Scholar
  36. 36.
    Sagave, S.: DG-algebras and derived A1-algebras. J. Reine Angew. Math. 639, 73–105 (2010)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Shilane, L.: Filtered spaces admitting spectral sequence operations. Pac. J. Math. 62(2), 569–585 (1976)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Stanley, R.P.: Enumerative combinatorics. Volume 1, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (2012)Google Scholar
  39. 39.
    Stasheff, J.D.: Homotopy associativity of H-spaces. I. Trans. Am. Math. Soc. 108, 275–292 (1963)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Stasheff, J.D.: Homotopy associativity of H-spaces. II. Trans. Am. Math. Soc. 108, 293–312 (1963)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Weibel, C.A.: An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)Google Scholar
  42. 42.
    Weinberger, S.: What is...persistent homology? Not. Am. Math. Soc. 58(1), 36–39 (2011)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Yarmola, A.: Persistence and computation of the cup product. Thesis (B.Sc.), Stanford University (2010).
  44. 44.
    Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Tbilisi Centre for Mathematical Sciences 2017

Authors and Affiliations

  1. 1.Institut FourierUniversité Grenoble AlpesGrenobleFrance
  2. 2.Departamento de Matemática, FCEyNUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations