Advertisement

Journal of Homotopy and Related Structures

, Volume 12, Issue 3, pp 727–739 | Cite as

The mod 2 dual Steenrod algebra as a subalgebra of the mod 2 dual Leibniz-Hopf algebra

  • Neşet Deniz Turgay
  • Shizuo Kaji
Article
  • 92 Downloads

Abstract

The mod 2 Steenrod algebra \(\mathcal {A}_2\) can be defined as the quotient of the mod 2 Leibniz–Hopf algebra \(\mathcal {F}_2\) by the Adem relations. Dually, the mod 2 dual Steenrod algebra \(\mathcal {A}_2^*\) can be thought of as a sub-Hopf algebra of the mod 2 dual Leibniz–Hopf algebra \(\mathcal {F}_2^*\). We study \(\mathcal {A}_2^*\) and \(\mathcal {F}_2^*\) from this viewpoint and give generalisations of some classical results in the literature.

Keywords

Leibniz–Hopf algebra Steenrod algebra Adem relation Hopf algebra Conjugation Antipode 

Mathematics Subject Classification

55S10 16T05 57T05 

Notes

Acknowledgements

We would like to thank Stephen Theriault, Martin Crossley, and Carmen Rovi for their comments on the earlier version of this paper.

References

  1. 1.
    Adams, J.F.: Lectures on generalised cohomology. Springer Lect. Notes Math. 99, 1–138 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Crossley, M.D.: Some Hopf algebras of words. Glasgow Math J. 48, 575–582 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Crossley, M.D., Turgay, N.D.: Conjugation invariants in the Leibniz Hopf algebra. J. Pure Appl. Algebra 217, 2247–2254 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Crossley, M.D., Turgay, N.D.: Conjugation invariants in the mod \(2\) dual Leibniz–Hopf algebra. Commun. Algebra 41, 3261–3266 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Crossley, M.D., Whitehouse, S.: On conjugation invariants in the dual Steenrod algebra. Proc. AMS. 128, 2809–2818 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ehrenborg, R.: On posets and Hopf algebras. Adv. Math. 119, 1–25 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gelfand, I.M., Krob, D., Lascoux, A., Leclerc, B., Retakh, V.S., Thibon, J.-Y.: Noncommutative symmetric functions. Adv. Math. 112, 218–348 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hazewinkel, M.: Generalized overlapping shuffle algebras. J. Math. Sci. N Y 106, 3168–3186 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hazewinkel, M.: The algebra of quasi-symmetric functions is free over the integers. Adv. Math. 164, 283–300 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hazewinkel, M.: Symmetric functions, noncommutative symmetric functions, and quasisymmetric functions. Monodromy and differential equations. Acta Appl. Math. 75, 55–83 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hazewinkel, M.: Explicit polynomial generators for the ring of quasisymmetric functions over the integers. Acta Appl. Math 109, 39–44 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Malvenuto, C., Reutenauer, C.: Duality between quasi-symmetric functions and the solomon descent algebra. J. Algebra 177, 967–982 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Milnor, J.: The Steenrod algebra and its dual. Ann. Math. 67, 150–171 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Milnor, J., Moore, J.: On the structure of Hopf algebras. Ann. Math. 81, 211–264 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Monks, K.G.: Change of basis, monomial relations, and the \(P_t^{s}\) bases for the Steenrod algebra. J. Pure Appl. Algebra 125, 235–260 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kaji, S.: Maple script for conjugation and product in the (dual) Leibniz–Hopf algebra and Steenrod algebra. http://www.skaji.org/code
  17. 17.
    Solomon, L.: A Mackey formula in the group ring of a Coxeter group. J. Algebra 41, 255–268 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Steenrod, N.E., Epstein, D.B.A.: Cohomology Operations. Princeton Univ. Press, Princeton (1962)zbMATHGoogle Scholar
  19. 19.
    Turgay, N.D.: An alternative approach to the Adem relations in the mod 2 Steenrod algebra. Turkish J. Math. 38(5), 924–934 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Tbilisi Centre for Mathematical Sciences 2016

Authors and Affiliations

  1. 1.Department of MathematicsFaculty of Arts and Sciences, Eastern Mediterranean UniversityGazimagusaTurkey
  2. 2.Department of Mathematical Sciences, Faculty of ScienceYamaguchi UniversityYamaguchiJapan

Personalised recommendations