Journal of Homotopy and Related Structures

, Volume 11, Issue 3, pp 571–597 | Cite as

Coxeter transformation groups and reflection arrangements in smooth manifolds

Article
  • 61 Downloads

Abstract

We represent a Coxeter group as a subgroup of diffeomorphisms of a smooth manifold. These so-called Coxeter transformation groups fix a union of codimension-1 (reflecting) submanifolds and permute the connected components of the complement. Their action naturally extends to the tangent bundle of the ambient manifold and fixes the union of tangent bundles of these reflecting submanifolds. Fundamental group of the tangent bundle complement and that of its quotient serve as the analogue of pure Artin group and Artin group respectively. The main aim of this paper is to prove Salvetti’s theorems in this context. We show that the combinatorial data of the Coxeter transformation group can be used to construct a cell complex which is equivariantly homotopy equivalent to the tangent bundle complement.

Keywords

Coxeter groups Artin groups Reflection groups on manifolds Salvetti complex Nerve lemma 

Mathematics Subject Classification

20F55 52C35 57S30 20F36 20F65 

References

  1. 1.
    Alekseevsky, D.V., et al.: Reflection groups on Riemannian manifolds. Ann. Mat. Pura Appl. (4) 186(1), 25–58 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bredon, G.E.: Introduction to compact transformation groups. In: Pure and Applied Mathematics, vol. 46, pp. xiii\(+\)459. Academic Press, New York (1972)Google Scholar
  3. 3.
    Brieskorn, E.: Sur les groupes de tresses. In: Séminaire Bourbaki, (1971/1972), Exp. No. 401, Lecture Notes in Math., vol. 317, pp. 21–44. Springer, Berlin (1973)Google Scholar
  4. 4.
    Charney, R.: Artin groups of finite type are biautomatic. Math. Ann. 292(4), 671–683 (1992)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Charney, R., Davis, M.W.: Finite K(\(\pi \), 1)s for Artin groups. In: Prospects in Topology (Princeton, NJ, 1994), Ann. of Math. Stud., vol. 138, pp. 110–124. Princeton University Press, Princeton (1995)Google Scholar
  6. 6.
    Charney, R., Davis, M.W.: The K(\(\pi \), 1)-problem for hyperplane complements associated to infinite reflection groups. J. Am. Math. Soc. 8(3), 597–627 (1995)MathSciNetMATHGoogle Scholar
  7. 7.
    Davis, M.W.: Lectures on orbifolds and reflection groups. In: Transformation Groups and Moduli Spaces of Curves, Adv. Lect. Math. (ALM), vol. 16, pp. 63–93. International Press, Somerville (2011)Google Scholar
  8. 8.
    Davis, M.W.: The geometry and topology of Coxeter groups. In: London Mathematical Society Monographs Series, vol. 32, pp. xvi\(+\)584. Princeton University Press, Princeton (2008)Google Scholar
  9. 9.
    Davis, M.: When are two Coxeter orbifolds diffeomorphic? Mich. Math. J. 63(2), 401–421 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Deligne, P.: Les immeubles des groupes de tresses généralisés. Invent. Math. 17, 273–302 (1972)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Deshpande, P.: Arrangements of submanifolds and the tangent bundle complement. Ph.D. thesis. The University of Western Ontario (2011). http://ir.lib.uwo.ca/etd/154. Accessed 4 Oct 2014
  12. 12.
    Gutkin, E.: Geometry and combinatorics of groups generated by reflections. Enseign. Math. (2) 32(1–2), 95–110 (1986)MathSciNetMATHGoogle Scholar
  13. 13.
    Humphreys, J.E.: Reflection groups and Coxeter groups. In: Cambridge Studies in Advanced Mathematics, vol. 29, pp. xii\(+\)204. Cambridge University Press, Cambridge (1990)Google Scholar
  14. 14.
    Joyce, D.: On manifolds with corners. In: Advances in Geometric Analysis, Adv. Lect. Math. (ALM), vol. 21, pp. 225–258. International Press, Somerville (2012)Google Scholar
  15. 15.
    van der Lek, H.: The homotopy type of complex hyperplane complements. Ph.D. thesis. Katholieke Universiteit te Nijmegen (1983)Google Scholar
  16. 16.
    Paris, L.: The K(\(\pi \), 1) conjecture for Artin groups. arXiv:1211.7339 [math.GR]
  17. 17.
    Salvetti, M.: Topology of the complement of real hyperplanes in \(\mathbf{C}^N\). Invent. Math. 88(3), 603–618 (1987)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Salvetti, M.: The homotopy type of Artin groups. Math. Res. Lett. 1(5), 565–577 (1994)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Straume, E.: The topological version of groups generated by reflections. Math. Z. 176(3), 429–446 (1981)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Tamaki, D.: Cellular stratified spaces I: face categories and classifying spaces. arXiv:1106.3772 [math.AT]
  21. 21.
    Vinberg, È.B.: Discrete linear groups that are generated by reflections. Izv. Akad. Nauk SSSR Ser. Mat. 35, 1072–1112 (1971)MathSciNetGoogle Scholar
  22. 22.
    Wiemeler, M.: Exotic torus manifolds and equivariant smooth structures on quasitoric manifolds. Math. Z. 273(3–4), 1063–1084 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Tbilisi Centre for Mathematical Sciences 2015

Authors and Affiliations

  1. 1.Chennai Mathematical InstituteSiruseriIndia

Personalised recommendations