Journal of Homotopy and Related Structures

, Volume 10, Issue 3, pp 437–458 | Cite as

Deformations associated with rigid algebras

  • M. Gerstenhaber
  • A. Giaquinto


The deformations of an infinite dimensional algebra may be controlled not just by its own cohomology but by that of an associated diagram of algebras, since an infinite dimensional algebra may be absolutely rigid in the classical deformation theory for single algebras while depending essentially on some parameters. Two examples studied here, the function field of a sphere with four marked points and the first Weyl algebra, show, however, that the existence of these parameters may be made evident by the cohomology of a diagram (presheaf) of algebras constructed from the original. The Cohomology Comparison Theorem asserts, on the other hand, that the cohomology and deformation theory of a diagram of algebras is always the same as that of a single, but generally rather large, algebra constructed from the diagram.


Cohomology Deformations Diagrams of algebras Rigidity Punctured sphere Weyl algebra 


  1. 1.
    Barr, M.: Harrison homology, Hochschild homology and triples. J. Algebra 8, 314–323 (1968)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Carlitz, L.: On abelian fields. Trans. Am. Math. Soc. 35, 122–136 (1933)CrossRefGoogle Scholar
  3. 3.
    Froelicher, A., Nijenhuis, A.: A theorem on stability of complex structures. Proc. Nat. Acad. Sci. U.S.A. 43, 239–241 (1957)Google Scholar
  4. 4.
    Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math. 79, 59–103 (1964)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Gerstenhaber, M.: On the deformation of rings and algebras III. Ann. Math. 88, 1–34 (1968)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Gerstenhaber, M.: On the deformation of rings and algebras IV. Ann. Math. 99, 257–275 (1974)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gerstenhaber, M.: Self-dual and quasi self-dual algebras. Israel J. Math. arXiv:1111.0622v1 [math.KT] (2011). (in press)Google Scholar
  8. 8.
    Gerstenhaber, M., Giaquinto, A.: On the cohomology of the Weyl algebra, the quantum plane, and the q-Weyl algebra. arXiv:1208.0346 [math.QA] (2012)Google Scholar
  9. 9.
    Gerstenhaber, M., Giaquinto, A., Schack, S.D.: Diagrams of Lie algebras. J. Pure Appl. Algebra 196, 169–184 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gerstenhaber, M., Schack, S.D.: Simplicial cohomology is Hochschild cohomology. J. Pure Appl. Algebra 30, 143–156 (1983)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gerstenhaber, M., Schack, S.D.: A Hodge-type decomposition for commutative algebra cohomology. J. Pure Appl. Algebra 48, 229–247 (1987)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gerstenhaber, M., Schack, S.D.: Algebraic cohomology and deformation theory, pp. 11–264. (in [15])Google Scholar
  13. 13.
    Giaquinto, A., Zhang, J.J.: Quantum Weyl algebras. J. Algebra 176, 861–881 (1995)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Groenewold, H.J.: On the principles of elementary quantum mechanics. Physica 12, 405–460 (1946)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hazewinkel, M., Gerstenhaber, M. (eds.): Deformation theory of algebras and structures and applications, vol. 247. NATO ASI Science Series. Kluwer Academic Publishers, Dordrecht/Boston/London (1988)Google Scholar
  16. 16.
    Hochschild, G., Kostant, B., Rosenberg, A.: Differential forms on regular affine algebras. Trans. Am. Math. Soc. 102, 384–408 (1962)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kodaira, K.: Complex Manifolds and Deformation of Complex Structures. Springer, Berlin (1986)Google Scholar
  18. 18.
    Lowen, W., Van Den Bergh, M.: A Hochschild cohomology comparison theorem for prestacks. Trans. Am. Math. Soc. 363, 969–986 (2011)Google Scholar
  19. 19.
    Mendez, M., Rodriguez, A.: q-Analogs of the Stirling and Bell numbers. J. Phys. Conf. Ser. 104, 012019 (2008)CrossRefGoogle Scholar
  20. 20.
    Moyal, J.E.: Quantum mechanics as a statistical theory. In: Proceedings of Cambridge Philosophical Society, vol. 45, pp. 99–124. Cambridge University Press, Cambridge (1949)Google Scholar
  21. 21.
    Naidu, D., Shroff, P., Witherspoon, S.: Hochschild cohomology of group extensions of quantum symmetric algebras. Proc. Am. Math. Soc. 139, 1553–1567 (2011)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Nijenhuis, A.: A lie product for the cohomology of subalgebras with coefficients in the quotient. Bull. Am. Math. Soc. 73, 962–967 (1967)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Nijenhuis, A.: Composition systems and deformations of subalgebras. Indag. Math. 30, 119–136 (1968)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Parasarathy, R.: q-Fermionic numbers and their roles in some physical problems. Phys. Lett. A. 326, 178–186 (2004)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Skryabin, S.: Group schemes and rigidity of algebras in characteristic zero. J. Pure Appl. Algebra 105, 195–224 (1995)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Sridharan, R.: Filtered algebras and representations of Lie algebras. Trans. Am. Math. Soc. 100, 530–550 (1961)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Stancu, A.: The invariance and the general cct theorems. J. Homotopy Relat. Struct. 8, 127–140 (2013)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Stancu, A.: On the cohomology comparison theorem. J. Homotopy Relat. Struct. 6, 39–63 (2011)MathSciNetMATHGoogle Scholar
  29. 29.
    Teichmüller, O.: Extremale quasikonforme Abbildungen und Quadratische Differentiale (Abhandlungen Preussische Akad. Wiss. Math. Nat. Kl. 197), no. 22, p. 1940. (1939) [see also Teichmüller, O.: Gesammelete Abhandlungen. In: Ahlfors, L.V., Gehring, F.W. (eds.) Springer, Berlin (1982)]Google Scholar

Copyright information

© Tbilisi Centre for Mathematical Sciences 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of MathematicsLoyola University ChicagoChicagoUSA

Personalised recommendations