For a background on regular categories we refer the reader to the first few pages of [3], which gives a sufficiently detailed overview of regular categories from the point of view of their use for universal algebraic considerations relevant to the present paper. Apart from the definition and basic properties of a regular category, we use the calculus of relations and the language of generalised elements for regular categories, as described in [3].
Note that the definition of \((S,R)_n\) recalled in Sect. 1 makes sense for all \(n\geqslant 0\). Indeed, for \(n=0\) we have \((S,R)_n=(SR)^{\frac{0}{2}}=1_Y\) where \(1_Y\) denotes the identity morphism \(1_Y:Y\rightarrow Y\) regarded as a relation (the internal equality relation at \(Y\)) and for \(n=1\) we have \((S,R)_n=(SR)^0S=S\). However, the property of \(n\)-permutability of congruences is “interesting” only for \(n\geqslant 2\). Recall that 2-permutable categories are also called Mal’tsev categories [4] while 3-permutable categories are known as Goursat categories [3, 4].
Lemma 1
In a regular category \(\mathbb C \), consider a span
and the following relations associated to it:
-
the relation \(S=f_2f_1^\circ \) defined as the composite of the opposite relation of the morphism \(f_1\) regarded as a relation, and the morphism \(f_2\) regarded as a relation;
-
the kernel congruences \(C_1=f_1^\circ f_1\) and \(C_2=f_2^\circ f_2\), of \(f_1\) and \(f_2\) respectively.
Then for all \(n\geqslant 0\) we have:
$$\begin{aligned} (C_2,C_1)_{n+1}&= f_2^\circ (S,S^\circ )_{n} f_{\frac{3}{2}+\frac{(-1)^n}{2}}\\ {f_2} (C_2,C_1)_{n+2} f_{\frac{3}{2}-\frac{(-1)^n}{2}}^\circ&= {f_2} (C_1,C_2)_{n} f_{\frac{3}{2}-\frac{(-1)^n}{2}}^\circ \\ {f_2} (C_1,C_2)_{n} f_{\frac{3}{2}-\frac{(-1)^n}{2}}^\circ&= (S,S^\circ )_{n+1} \end{aligned}$$
Proof
Suppose first that \(n\) is even. Then:
$$\begin{aligned} (C_2,C_1)_{n+1}&= (C_2C_1)^{\frac{n}{2}}C_2= (f_2^\circ f_2f_1^\circ f_1)^\frac{n}{2}f_2^\circ f_2\\&= f_2^\circ (f_2f_1^\circ f_1f_2^\circ )^\frac{n}{2} f_2=f_2^\circ (S S^\circ )^\frac{n}{2} f_2= f_2^\circ (S,S^\circ )_{n} f_2\\ f_2(C_2,C_1)_{n+2}f_1^\circ&= f_2(C_2C_1)^\frac{n+2}{2}f_1^\circ =f_2(f_2^\circ f_2 f_1^\circ f_1)^\frac{n+2}{2}f_1^\circ \\&= f_2f_2^\circ f_2(f_1^\circ f_1f_2^\circ f_2 )^\frac{n}{2}f_1^\circ f_1f_1^\circ =f_2(f_1^\circ f_1 f_2^\circ f_2)^{\frac{n}{2}}f_1^\circ \\&= f_2(C_1,C_2)_nf_1^\circ \\ f_2(C_1,C_2)_nf_1^\circ&= f_2(f_1^\circ f_1f_2^\circ f_2)^\frac{n}{2} f_1^\circ =(f_2 f_1^\circ f_1 f_2^\circ )^\frac{n}{2}f_2 f_1^\circ \\&= (f_2 f_1^\circ ,f_1 f_2^\circ )_{n+1}=(S,S^\circ )_{n+1} \end{aligned}$$
If \(n\) is odd, then:
$$\begin{aligned} (C_2,C_1)_{n+1}&= (C_2C_1)^{\frac{n+1}{2}}= (f_2^\circ f_2 f_1^\circ f_1)^\frac{n-1}{2}f_2^\circ f_2f_1^\circ f_1\\&= f_2^\circ (f_2f_1^\circ f_1f_2^\circ )^\frac{n-1}{2} f_2 f_1^\circ f_1\\&= f_2^\circ (S S^\circ )^\frac{n-1}{2} S f_1 = f_2^\circ (S,S^\circ )_{n} f_1\\ f_2(C_2,C_1)_{n+2}f_2^\circ&= f_2(C_2C_1)^\frac{n+1}{2}C_2 f_2^\circ =f_2(f_2^\circ f_2 f_1^\circ f_1)^\frac{n+1}{2}f_2^\circ f_2f_2^\circ \\&= f_2(f_2^\circ f_2 f_1^\circ f_1)^\frac{n+1}{2}f_2^\circ =f_2(f_2^\circ f_2f_1^\circ f_1)^\frac{n-1}{2}f_2^\circ f_2f_1^\circ f_1f_2^\circ \\&= f_2f_2^\circ f_2(f_1^\circ f_1f_2^\circ f_2)^\frac{n-1}{2}f_1^\circ f_1f_2^\circ \\&= f_2(f_1^\circ f_1f_2^\circ f_2)^\frac{n-1}{2}f_1^\circ f_1f_2^\circ =f_2(C_1,C_2)_n f_2^\circ \\ f_2(C_1,C_2)_nf_2^\circ&= f_2(f_1^\circ f_1f_2^\circ f_2)^\frac{n-1}{2}f_1^\circ f_1f_2^\circ =(f_2f_1^\circ f_1f_2^\circ )^\frac{n-1}{2}f_2f_1^\circ f_1f_2^\circ \\&= (f_2f_1^\circ ,f_1f_2^\circ )_{n+1}=(S,S^\circ )_{n+1} \end{aligned}$$
\(\square \)
Proposition 1
In the setting of Lemma 1, for any natural number \(n\geqslant 2\) we always have \((S,S^{\circ })_{n-1}\leqslant (S,S^{\circ })_{n+1}\), whereas for each \(n\geqslant 1\), the inclusion \((S,S^{\circ })_{n+1}\leqslant (S,S^{\circ })_{n-1}\) holds if and only if \((C_1,C_2)_n\leqslant (C_2,C_1)_n\).
Proof
The fact that the inclusion \((S,S^{\circ })_{n-1}\leqslant (S,S^{\circ })_{n+1}\) holds for all \(n\geqslant 2\) can be deduced from the fact that it holds for \(n=2\), in which case it becomes
$$\begin{aligned} S\leqslant SS^{\circ }S. \end{aligned}$$
Next we show
$$\begin{aligned} (S,S^{\circ })_{n+1}\leqslant (S,S^{\circ })_{n-1}\,\,\Leftrightarrow \,\,(C_1,C_2)_n\leqslant (C_2,C_1)_n \end{aligned}$$
Suppose first \((S,S^{\circ })_{n+1}\leqslant (S,S^{\circ })_{n-1}\). Notice that \((C_1,C_2)_n\leqslant (C_2,C_1)_{n+2}\). Then, applying Lemma 1 twice we get:
$$\begin{aligned} (C_1,C_2)_n&\leqslant (C_2,C_1)_{n+2}=f_2^\circ (S,S^\circ )_{n+1} f_{\frac{3}{2}+\frac{(-1)^{n+1}}{2}}\\&\leqslant f_2^\circ (S,S^\circ )_{n-1} f_{\frac{3}{2}+\frac{(-1)^{n-1}}{2}}=(C_2,C_1)_n \end{aligned}$$
Conversely, assuming \((C_1,C_2)_n\leqslant (C_2,C_1)_n\) we get from Lemma 1 that for each \(n\geqslant 2\),
$$\begin{aligned} (S,S^\circ )_{n+1}&= f_2(C_1,C_2)_nf_{\frac{3}{2}-\frac{(-1)^n}{2}}^\circ \leqslant f_2(C_2,C_1)_nf_{\frac{3}{2}-\frac{(-1)^n}{2}}^\circ \\&= f_2(C_1,C_2)_{n-2}f_{\frac{3}{2}-\frac{(-1)^n}{2}}^\circ =(S,S^\circ )_{n-1} \end{aligned}$$
For \(n=1\) it is easy to see directly that we still get \((S,S^{\circ })_{n+1}\leqslant (S,S^{\circ })_{n-1}\). \(\square \)
The proposition above immediately gives the following (which in the case when \(n\geqslant 2\) becomes (ii)\(\Leftrightarrow \)(iii) of Theorem 3.5 in [3]):
Corollary 1
For any natural number \(n\geqslant 1\), a regular category has \(n\)-permutable congruences if and only if \((S,S^\circ )_{n+1}\leqslant (S,S^\circ )_{n-1}\) for any internal relation \(S\) in it.
This and the following proposition together imply Theorem 1.
Proposition 2
In a regular category, the following conditions are equivalent for any natural number \(n\geqslant 1\):
-
(i)
\((S,S^\circ )_{n+1}\leqslant (S,S^\circ )_{n-1}\) for any internal relation \(S\).
-
(ii)
\((S,S^\circ )_{n+1}\leqslant (S,S^\circ )_{n-1}\) for any internal endorelation \(S\).
-
(iii)
\(R^\circ \leqslant R^{n-1} \) for any internal reflexive relation \(R\).
-
(iv)
\(R^n\leqslant R^{n-1}\) for any internal reflexive relation \(R\).
Proof
Let us immediately note that the implication (i)\(\Rightarrow \)(ii) is trivial. We will show (ii)\(\Rightarrow \)(iii), (iii)\(\Rightarrow \)(iv), and (iv)\(\Rightarrow \)(i).
The case when \(n=1\) is quite straightforward. Indeed, in this case (i) states that for any relation \(S\) from an object \(X\) to an object \(Y\) the composite \(SS^\circ \) is a subrelation of the equality relation on \(Y\), (ii) states the same for \(X=Y\), (iii) states that the dual of any reflexive relation on an object \(A\) coincides with the equality relation on \(A\), while (iv) states that any reflexive relation on an object \(A\) coincides with the equality relation on \(A\). Thus, (iii) and (iv) are trivially equivalent. To get (ii)\(\Rightarrow \)(iv), let \(R\) be a reflexive relation on \(A\) and use (ii) for \(S=R\) after noting that since \(R\) is reflexive, we have \(R\leqslant RR^\circ \). Finally, for (iv)\(\Rightarrow \)(i) consider an internal relation \((s_1,s_2):S\rightarrow X\times Y\) and note that (iv) will imply that the kernel congruence of \(s_1\) is the equality relation on \(S\). Hence we get the following, where the first equality comes from Lemma 1:
$$\begin{aligned} (S,S^\circ )_{2}=s_2 1_S s_2^\circ \leqslant s_2 s_2^\circ \leqslant 1_S=(S,S^\circ )_{0}. \end{aligned}$$
In the case when \(n=2\), (i) states that any internal relation is difunctional, (ii) states that any internal endorelation is difunctional, (iii) states that any internal reflexive relation is symmetric, while (iv) states that any internal reflexive relation is transitive. The equivalence of these conditions for any finitely complete category was first obtained by A. Carboni, M.C. Pedicchio, and N. Pirovano in [5]. Our argument for \(n\geqslant 2\) can be seen as a generalisation of their argument, despite of the fact that the context of finitely complete categories is more general than the context of regular categories (see Remark 1). To see how to get the generalisation, it will be useful to treat the case \(n=3\) separately.
(ii)\(\Rightarrow \)(iii) for \(n=3\): Given an internal reflexive relation \(R\rightarrow A\times A\), we construct a relation \(S\rightarrow R\times R\) by taking \(S\) to be the subobject of \(R\times R\) whose generalised elements are given by the displays
To have \(R^{\circ }\leqslant R^2\) we must show that for any two generalised elements \(a:V\rightarrow A\) and \(b:V\rightarrow A\) of \(A\) such that \(bRa\), there exists a regular epimorphism \(\gamma :U\rightarrow V\) and a generalised element \(d:U\rightarrow A\) such that \(a\gamma R d R b\gamma \). Now, using the reflexivity of \(R\) we have
The inequality \(SS^\circ SS^\circ \leqslant SS^\circ \) applied to the above situation gives that there exists a regular epimorphism \(\gamma :U\rightarrow V\) and there exist generalised elements \(c\), \(d:U\rightarrow A\) with
from which we get \(a\gamma R d R b\gamma \).
This argument can be exhibited by the following matrix display:
Here:
-
the diagram of arrows indicates how \(S\) is constructed;
-
columns represent generalised elements of \(S\) used in the argument. The columns on the left side translate the display (1). In particular, the first column indicates that \((b,a)S(a,a)\), i.e. that \((a,a)S^\circ (b,a)\), which comes from the top part of the relations displayed in (1). The label \(0\) of the first column of variables indicates which pair of variables from that column was assumed to belong to \(R\) in the beginning of the argument—it is the pair that corresponds to the arrow with the same label \(0\);
-
in a similar way, the columns on the right side sketch the display (2), with the numerical labels giving the required conclusion of the argument.
(iii)\(\Rightarrow \)(iv) for \(n=3\): In this case, the required argument can be summarised using a similar matrix display:
In detail, given an internal reflexive relation \(R\rightarrow A\times A\), construct another one \(S\rightarrow X\times X\) as follows: generalised elements of \(X\) are triples \((a,b,c)\) of generalised elements of \(A\) such that \(aRbRc\), and \(S\) is defined by
$$\begin{aligned} (a,b,c)S(a',b',c') \,\,\Leftrightarrow \,\, a Rb'\, and \,b Rc'. \end{aligned}$$
It is easy to see that \(S\) is a reflexive relation. Now, using \(S^{\circ }\leqslant S S\) we want to show that \(R R R\leqslant R R\). Assume \(a_0Ra_1Ra_2Ra_3\) where \(a_0,a_1,a_2,a_3\) are generalised elements of \(A\). Then, \((a_1,a_2,a_3)S(a_0,a_1,a_2)\) which gives
$$\begin{aligned} (a_0\gamma ,a_1\gamma ,a_2\gamma )S(b_1,b_2,b_3)S(a_1\gamma ,a_2\gamma ,a_3\gamma ) \end{aligned}$$
for some regular epimorphism \(\gamma \) and generalised elements \(b_1,b_2,b_3\) of \(A\) (having the same domain as \(\gamma \)). By the definition of \(S\) we get \(a_0\gamma Rb_2Ra_3\gamma \).
(iv)\(\Rightarrow \)(i) for \(n=3\): This proof is sketched by the following matrix display:
This proves Proposition 2 for \(n=3\). The proof for a general \(n\geqslant 2\) is sketched by the matrices displayed in Figs. 1, 2, 3, 4 and 5 below.
\(\square \)