Skip to main content
Log in

Generation of multiple orbital angular momentum and on-demand single photons by combining quantum dot to metalens

  • Original Paper - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In recent years, remarkable progress has been achieved in generating multiple orbital angular momentum beams, primarily in classical physics, exemplified by technologies such as the vertical-cavity surface-emitting laser (VCSEL). However, the study of multiple orbital angular momentum and on-demand single photons using straightforward and efficient methods still faces limitations in the quantum domain. For example, numerous existing methods necessitate a relatively extensive optical path, posing challenges for optical integration. On-chip generation of OAM single photons lacks the versatility to manipulate various degrees of freedom simultaneously. Here, we propose a design that combines quantum dots with metalens. This method integrates phase multiplexing and spatial multiplexing techniques, enabling the generation of multiple single-photon beams with distinct topological charges and spatial separation through a simpler fabrication process. Our simulation results not only introduce a novel design paradigm but also significantly advance the ongoing research efforts related to multiple orbital angular momentum and on-demand single photons in the quantum realm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. C.H. Bennett, G. Brassard, Theoret. Comput. Sci. 560, 7 (2014)

    Article  MathSciNet  Google Scholar 

  2. L. Olislager, E. Woodhead, K.P. Huy, J.M. Merolla, P. Emplit, S. Massar, Phys. Rev. A (2014). https://doi.org/10.1103/PhysRevA.89.052323

    Article  Google Scholar 

  3. A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, Nature 412(6844), 313 (2001)

    Article  ADS  Google Scholar 

  4. G.J. Mendoza, R. Santagati, J. Munns, E. Hemsley, M. Piekarek, E. Martín-López, G.D. Marshall, D. Bonneau, M.G. Thompson, J.L. O’Brien, Optica 3(2), 127 (2016)

    Article  ADS  Google Scholar 

  5. A.B. U’Ren, C. Silberhorn, K. Banaszek, I.A. Walmsley, Phys. Rev. Lett. (2004). https://doi.org/10.1103/PhysRevLett.93.093601

    Article  Google Scholar 

  6. S. Castelletto, B.C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, T. Ohshima, Nat. Mater. 13(2), 151 (2013)

    Article  ADS  Google Scholar 

  7. X.L. Wang, L.K. Chen, W. Li, H.L. Huang, C. Liu, C. Chen, Y.H. Luo, Z.E. Su, D. Wu, Z.D. Li, H. Lu, Y. Hu, X. Jiang, C.Z. Peng, L. Li, N.L. Liu, Y.A. Chen, C.Y. Lu, J.W. Pan, Phys. Rev. Lett. 117(21), 215501 (2016)

    Article  ADS  Google Scholar 

  8. S. Paesani, M. Borghi, S. Signorini, A. Maïnos, L. Pavesi, A. Laing, Nat. Commun. 11(1), 2505 (2020)

    Article  ADS  Google Scholar 

  9. N. Somaschi, V. Giesz, L. De Santis, J.C. Loredo, M.P. Almeida, G. Hornecker, S.L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N.D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A.G. White, L. Lanco, P. Senellart, Nat. Photonics 10(5), 340 (2016)

    Article  ADS  Google Scholar 

  10. H. Wang, Z.C. Duan, Y.H. Li, S. Chen, J.P. Li, Y.M. He, M.C. Chen, Y. He, X. Ding, C.Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.Y. Lu, J.W. Pan, Phys. Rev. Lett. 116(21), 212001 (2016)

    Article  ADS  Google Scholar 

  11. M.E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M.B. Bavinck, M.A. Verheijen, E.P.A.M. Bakkers, L.P. Kouwenhoven, V. Zwiller, Nat. Commun. (2012). https://doi.org/10.1038/ncomms1746

    Article  Google Scholar 

  12. G. Bulgarini, M.E. Reimer, M.B. Bavinck, K.D. Jöns, D. Dalacu, P.J. Poole, E.P.A.M. Bakkers, V. Zwiller, Nano Lett. 14(7), 4102 (2014)

    Article  ADS  Google Scholar 

  13. A. Thoma, P. Schnauber, J. Böhm, M. Gschrey, J.H. Schulze, A. Strittmatter, S. Rodt, T. Heindel, S. Reitzenstein, Appl. Phys. Lett. (2017). https://doi.org/10.1063/1.4973504

    Article  Google Scholar 

  14. A. Sipahigil, K.D. Jahnke, L.J. Rogers, T. Teraji, J. Isoya, A.S. Zibrov, F. Jelezko, M.D. Lukin, Phys. Rev. Lett. 113(11), 113602 (2014)

    Article  ADS  Google Scholar 

  15. Y.M. He, G. Clark, J.R. Schaibley, Y. He, M.C. Chen, Y.J. Wei, X. Ding, Q. Zhang, W. Yao, X.D. Xu, C.Y. Lu, J.W. Pan, Nat. Nanotechnol. 10(6), 497 (2015)

    Article  ADS  Google Scholar 

  16. C. Palacios-Berraquero, D.M. Kara, A.R.P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A.K. Ott, M. Loncar, A.C. Ferrari, M. Atatüre, Nat. Commun. 8(1), 15093 (2017)

    Article  ADS  Google Scholar 

  17. T.T. Tran, K. Bray, M.J. Ford, M. Toth, I. Aharonovich, Nat. Nanotechnol. 11(1), 37 (2015)

    Article  ADS  Google Scholar 

  18. G. Grosso, H. Moon, B. Lienhard, S. Ali, D.K. Efetov, M.M. Furchi, P. Jarillo-Herrero, M.J. Ford, I. Aharonovich, D. Englund, Nat. Commun. 8(1), 705 (2017)

    Article  ADS  Google Scholar 

  19. H.J. Lee, S. Im, D.J. Jung, K. Kim, J.A. Chae, J. Lim, J.W. Park, D. Shin, K. Char, B.G. Jeong, J.S. Park, E. Hwang, D. Lee, Y.S. Park, H.J. Song, J.H. Chang, W.K. Bae, Nat. Commun. 14(1), 201 (2023)

    Article  ADS  Google Scholar 

  20. H. Wang, Y.M. He, T.H. Chung, H. Hu, Y. Yu, S. Chen, X. Ding, M.C. Chen, J. Qin, X.X. Yang, R.Z. Liu, Z.C. Duan, J.P. Li, S. Gerhardt, K. Winkler, J. Jurkat, L.J. Wang, N. Gregersen, Y.H. Huo, Q. Dai, S.Y. Yu, S. Hofling, C.Y. Lu, J.W. Pan, Nat. Photonics 13(11), 770 (2019)

    Article  ADS  Google Scholar 

  21. S. Castelletto, J.P. Harrison, L. Marseglia, A.C. Stanley-Clarke, B.C. Gibson, B.A. Fairchild, J.P. Hadden, Y.L.D. Ho, M.P. Hiscocks, K. Ganesan, S.T. Huntington, F. Ladouceur, A.D. Greentree, S. Prawer, J.L. O’Brien, J.G. Rarity, New J. Phys. 13(2), 025020 (2011)

    Article  ADS  Google Scholar 

  22. H. Wang, H. Hu, T.H. Chung, J. Qin, X.X. Yang, J.P. Li, R.Z. Liu, H.S. Zhong, Y.M. He, X. Ding, Y.H. Deng, Q. Dai, Y.H. Huo, S. Höfling, C.Y. Lu, J.W. Pan, Phys. Rev. Lett. (2019). https://doi.org/10.1103/PhysRevLett.122.113602

    Article  Google Scholar 

  23. X. Ding, Y. He, Z.C. Duan, N. Gregersen, M.C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.Y. Lu, J.W. Pan, Phys. Rev. Lett. 116(2), 020401 (2016)

    Article  ADS  Google Scholar 

  24. J. Liu, R.B. Su, Y.M. Wei, B.M. Yao, S.F.C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J.T. Li, X.H. Wang, Nat. Nanotechnol. 14(6), 586 (2019)

    Article  ADS  Google Scholar 

  25. P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, P. Zoller, Nature 541(7638), 473 (2017)

    Article  ADS  Google Scholar 

  26. C.W. Qiu, Y.J. Yang, Science 357(6352), 645 (2017)

    Article  ADS  Google Scholar 

  27. L.X. Chen, W.H. Zhang, Z.W. Wu, J.K. Wang, R. Fickler, E. Karimi, Phys. Rev. A 96(2), 024052 (2017)

    Google Scholar 

  28. N.J. Cerf, M. Bourennane, A. Karlsson, N. Gisin, Phys. Rev. Lett. 88(12), 27902 (2002)

    Article  ADS  Google Scholar 

  29. A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Günthner, B. Heim, C. Marquardt, G. Leuchs, R.W. Boyd, E. Karimi, Optica 4(9), 1006 (2017)

    Article  ADS  Google Scholar 

  30. S.S.R. Oemrawsingh, J.A.W. van Houwelingen, E.R. Eliel, J.P. Woerdman, E.J.K. Verstegen, J.G. Kloosterboer, G.W. t Hooft, Appl. Opt. 43(3), 688 (2004)

    Article  ADS  Google Scholar 

  31. M. Vergara, C. Iemmi, Phys. Rev. A 100(5), 053812 (2019)

    Article  ADS  Google Scholar 

  32. M. Reicherter, T. Haist, E.U. Wagemann, H.J. Tiziani, Opt. Lett. 24(9), 608 (1999)

    Article  ADS  Google Scholar 

  33. B. Chen, Y.M. Wei, T.M. Zhao, S.F. Liu, R.B. Su, B.M. Yao, Y. Yu, J. Liu, X.H. Wang, Nat. Nanotechnol. 16(3), 302 (2021)

    Article  ADS  Google Scholar 

  34. C. Wu, S. Kumar, Y.H. Kan, D. Komisar, Z.M. Wang, S.I. Bozhevolnyi, F. Ding, Sci. Adv. 8(2), eabk3075 (2022)

    Article  ADS  Google Scholar 

  35. Y. Bao, Q. Lin, S. Rongbin, Z.-K. Zhou, J. Song, J. Li, X.-H. Wang, Sci. Adv. 6(31), eaba761 (2020)

    Article  Google Scholar 

  36. C. Li, J. Jang, T. Badloe, T.S. Yang, J. Kim, J. Kim, M. Nguyen, S.A. Maier, J. Rho, H.R. Ren, I. Aharonovich, Elight 3(1), 19 (2023)

    Article  Google Scholar 

  37. D. Komisar, S. Kumar, Y.H. Kan, C. Meng, L.F. Kulikova, V.A. Davydov, V.N. Agafonov, S.I. Bozhevolnyi, Nat. Commun. 14(1), 6253 (2023)

    Article  ADS  Google Scholar 

  38. X. Liu, Y. Kan, S. Kumar, D. Komisar, C. Zhao, S.I. Bozhevolnyi, Sci. Adv. 9(32), eadh0725 (2023)

    Article  Google Scholar 

  39. F. Yue, D. Wen, C. Zhang, B.D. Gerardot, W. Wang, S. Zhang, X. Chen, Adv. Mater. 29(15), 1603838 (2017)

    Article  Google Scholar 

  40. H. Sroor, Y.W. Huang, B. Sephton, D. Naidoo, A. Vallés, V. Ginis, C.W. Qiu, A. Ambrosio, F. Capasso, A. Forbes, Nat. Photonics 14(8), 498 (2020)

    Article  ADS  Google Scholar 

  41. F. Pan, P.-N. Ni, W. Bo, X.-Z. Pei, Q.-H. Wang, P.-P. Chen, X. Chen, Q. Kan, W.-G. Chu, Y.-Y. Xie, Adv. Mater. (2023). https://doi.org/10.1002/adma.202204286

    Article  Google Scholar 

  42. T.-C. Poon, M. Motamedi, Appl. Opt. 26(21), 4612 (1987)

    Article  ADS  Google Scholar 

  43. M. Mansouree, A. McClung, S. Samudrala, A. Arbabi, ACS Photonics 8(2), 455 (2021)

    Article  Google Scholar 

  44. F. Mei, Q. Geyang, X. Sha, J. Han, Y. Moxin, H. Li, Q. Chen, Z. Ji, J. Ni, C.-W. Qiu, Q. Song, Y. Kivshar, S. Xiao, Nat. Commun. (2023). https://doi.org/10.1038/s41467-023-42137-1

    Article  Google Scholar 

  45. H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, Yu. Xiangyang, J. Zhou, T.F. Krauss, J. Li, Nano Lett. 18(7), 4460 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Xiaodi Liu: investigation (lead), simulation calculation (lead), data curation (lead), writing–original draft (lead). Hongxin Huang: investigation (supporting). Yongle Zhou: investigation (supporting). Haowen Liang: writing—review and editing (supporting). Juntao Li: funding acquisition (lead), project administration (lead), writing—review and editing (lead).

Corresponding author

Correspondence to Juntao Li.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1255 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Huang, H., Zhou, Y. et al. Generation of multiple orbital angular momentum and on-demand single photons by combining quantum dot to metalens. J. Korean Phys. Soc. (2024). https://doi.org/10.1007/s40042-024-01093-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40042-024-01093-9

Keywords

Navigation