Skip to main content
Log in

TCAD simulation study of dual ferroelectric gate field-effect transistors with a recessed channel geometry for non-volatile memory applications

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, we propose a ferroelectric FET (FeFET) structure termed dual ferroelectric recessed channel FeFET (DF-RFeFET), employing metal–ferroelectric (FE)–metal–FE–metal–SiO2 interlayer (IL)–silicon (MFMFMIS) structures. The DF-RFeFET is aimed at enhancing the memory window (MW) for high-performance memory applications. TCAD simulations with calibrated FE parameters and device models reveal that the DF-RFeFET can achieve a larger MW thanks to the enhanced geometric advantage to offer a strong and localized electric field at the inner ferroelectrics near the gate metal’s corner. Moreover, design guidelines for the DF-RFeFET are suggested, including adjusting the inner and outer ferroelectric layers' thickness ratio and the recessed channel depth. The effects of introducing a relatively low-k oxide intermediate layer between dual ferroelectric layers and high-k gate stacks of IL on the MW have also been investigated. Through structural optimization, the DF-RFeFET demonstrated a record MW value of 5.5 V among the previously reported Si FeFETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Mulaosmanovic, E.T. Breyer, S. Dünkel, S. Beyer, T. Mikolajick, S. Slesazeck, Ferroelectric field-effect transistors based on HfO2: a review. Nanotechnol. 32, 502002 (2021). https://doi.org/10.1088/1361-6528/ac189f

    Article  Google Scholar 

  2. Mikolajick T, Schroeder U, Lomenzo P, Breyer E, Mulaosmanovic H, Hoffmann M, Mittmann T, Mehmood F, Max B, Slesazeck S. "Next generation ferroelectric memories enabled by hafnium oxide," 2019 IEEE International Electron Devices Meeting (IEDM).(2019):15.5. 1-.5. 4. https://doi.org/10.1109/IEDM19573.2019.8993447

  3. Chan C-Y, Chen K-Y, Peng H-K, Wu Y-H. "FeFET memory featuring large memory window and robust endurance of long-pulse cycling by interface engineering using high-k AlON," 2020 IEEE Symposium on VLSI Technology.(2020):1–2. https://doi.org/10.1109/VLSITechnology18217.2020.9265103

  4. W. Xiao, C. Liu, Y. Peng, S. Zheng, Q. Feng, C. Zhang, J. Zhang, Y. Hao, M. Liao, Y. Zhou, Memory window and endurance improvement of Hf0. 5Zr0. 5O2-based FeFETs with ZrO2 seed layers characterized by fast voltage pulse measurements. Nanoscale Res. Lett. 14, 1–7 (2019). https://doi.org/10.1186/s11671-019-3063-2

    Article  ADS  Google Scholar 

  5. Hu VP-H, Lin H-H, Zheng Z-A, Lin Z-T, Lu Y-C, Ho L-Y, Lee Y-W, Su C-W, Su C-J. "Split-gate FeFET (SG-FeFET) with dynamic memory window modulation for non-volatile memory and neuromorphic applications," 2019 Symposium on VLSI Technology.(2019):T134-T5. https://doi.org/10.23919/VLSIT.2019.8776555

  6. K. Lee, J.-H. Bae, S. Kim, J.-H. Lee, B.-G. Park, D. Kwon, Ferroelectric-gate field-effect transistor memory with recessed channel. IEEE Electr Device L. 41, 1201–1204 (2020). https://doi.org/10.1109/LED.2020.3001129

    Article  ADS  Google Scholar 

  7. K. Lee, S. Kim, J.-H. Lee, B.-G. Park, D. Kwon, Ferroelectric-Metal Field-Effect Transistor With Recessed Channel for 1T-DRAM Application. IEEE J Electron Devices Soc. 10, 13–18 (2021). https://doi.org/10.1109/JEDS.2021.3127955

    Article  Google Scholar 

  8. F. Tian, S. Zhao, H. Xu, J. Xiang, T. Li, W. Xiong, J. Duan, J. Chai, K. Han, X. Wang, Impact of interlayer and ferroelectric materials on charge trapping during endurance fatigue of FeFET with TiN/HfxZr1-xO2/interlayer/Si (MFIS) gate structure. IEEE T Electron Dev. 68, 5872–5878 (2021). https://doi.org/10.1109/TED.2021.3114663

    Article  ADS  Google Scholar 

  9. B. Kwak, K. Lee, N.-H. Park, S.J. Jeon, H. Kim, D. Kwon, Recessed Channel Ferroelectric-Gate Field-Effect Transistor Memory With Ferroelectric Layer Between Dual Metal Gates. IEEE T Electron Dev. 69, 1054–1057 (2022). https://doi.org/10.1109/TED.2022.3144621

    Article  ADS  Google Scholar 

  10. Ali T, Polakowski P, Kühnel K, Czernohorsky M, Kämpfe T, Rudolph M, Pätzold B, Lehninger D, Müller F, Olivo R. "A multilevel FeFET memory device based on laminated HSO and HZO ferroelectric layers for high-density storage," 2019 IEEE International Electron Devices Meeting (IEDM).(2019):28.7. 1-.7. 4. https://doi.org/10.1109/IEDM19573.2019.8993642

  11. C.-Y. Liao, K.-Y. Hsiang, F.-C. Hsieh, S.-H. Chiang, S.-H. Chang, J.-H. Liu, C.-F. Lou, C.-Y. Lin, T.-C. Chen, C.-S. Chang, Multibit ferroelectric FET based on nonidentical double HfZrO2 for high-density nonvolatile memory. IEEE Electr Device L. 42, 617–620 (2021). https://doi.org/10.1109/LED.2021.3060589

    Article  ADS  Google Scholar 

  12. Kim HJ, Park MH, Kim YJ, Lee YH, Jeon W, Gwon T, Moon T, Kim KD, Hwang CS. "Grain size engineering for ferroelectric Hf0. 5Zr0. 5O2 films by an insertion of Al2O3 interlayer," Appl Phys Lett.(2014);105:192903. https://doi.org/10.1063/1.4902072

  13. K. Toprasertpong, K. Tahara, Y. Hikosaka, K. Nakamura, H. Saito, M. Takenaka, S. Takagi, Low operating voltage, improved breakdown tolerance, and high endurance in Hf0. 5Zr0. 5O2 ferroelectric capacitors achieved by thickness scaling down to 4 nm for embedded ferroelectric memory. ACS Appl Mater Inter. 14, 51137–51148 (2022). https://doi.org/10.1021/acsami.2c15369

    Article  Google Scholar 

  14. T. Ali, K. Mertens, K. Kühnel, M. Rudolph, S. Oehler, D. Lehninger, F. Müller, R. Revello, R. Hoffmann, K. Zimmermann, A FeFET with a novel MFMFIS gate stack: towards energy-efficient and ultrafast NVMs for neuromorphic computing. Nanotechnology 32, 425201 (2021). https://doi.org/10.1088/1361-6528/ac146c

    Article  Google Scholar 

  15. Chen S, Ahn D-H, An SU, Kim Y. "Simulation of a Recessed Channel Ferroelectric-Gate Field-Effect Transistor with a Dual Ferroelectric Gate Stack for Memory Application," 2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM).(2023):1–3. https://doi.org/10.1109/EDTM55494.2023.10103116

  16. C. Su, Q. Huang, K. Wang, Z. Fu, R. Huang, New Insights Into Memory Window of Ferroelectric FET Impacted by Read Operations With Awareness of Polarization Switching Dynamics. IEEE T Electron Dev. 69, 5310–5315 (2022). https://doi.org/10.1109/TED.2022.3190824

    Article  ADS  Google Scholar 

  17. S. Miller, P. McWhorter, Physics of the ferroelectric nonvolatile memory field effect transistor. J. Appl. Phys. 72, 5999–6010 (1992). https://doi.org/10.1063/1.351910

    Article  ADS  Google Scholar 

  18. P.-H. Bricout, E. Dubois, Short-channel effect immunity and current capability of sub-0.1-micron MOSFET’s using a recessed channel. IEEE T Electron Dev. 43, 1251–1255 (1996). https://doi.org/10.1109/16.506776

    Article  ADS  Google Scholar 

  19. Kato D, Kajiwara Y, Mukai A, Ono H, Shindome A, Tajima J, Hikosaka T, Kuraguchi M, Nunoue S. "Suppression of short-channel effects in normally-off GaN MOSFETs with deep recessed-gate structures," Jpn J Appl Phys.(2020);59:SGGD13. https://doi.org/10.35848/1347-4065/ab6b7f

  20. T. Ali, P. Polakowski, T. Büttner, T. Kämpfe, M. Rudolph, B. Pätzold, R. Hoffmann, M. Czernohorsky, K. Kühnel, P. Steinke, Theory and experiment of antiferroelectric (AFE) Si-doped hafnium oxide (HSO) enhanced floating-gate memory. IEEE T Electron Dev. 66, 3356–3364 (2019). https://doi.org/10.1109/TED.2019.2921618

    Article  ADS  Google Scholar 

  21. S. Jindal, S.K. Manhas, S.K. Gautam, S. Balatti, A. Kumar, M. Pakala, Investigation of gate-length scaling of ferroelectric FET. IEEE T Electron Dev. 68, 1364–1368 (2021). https://doi.org/10.1109/TED.2021.3054720

    Article  ADS  Google Scholar 

  22. D.Y. Chung, J.H. Lee, Effects of Recess Channel (RC) Depth in Super Self-Aligned RC nMOSFET’s for sub-100 nm Device Technology. J. Korean Phys. Soc. 33, S216–S219 (1998)

    Google Scholar 

  23. Kim J, Oh H, Woo D, Lee Y, Kim D, Kim S, Ha G, Kim H, Kang N, Park J. "S-RCAT (sphere-shaped-recess-channel-array transistor) technology for 70nm DRAM feature size and beyond," 2005 Symposium on VLSI Technology, 2005.(2005):34–5. https://doi.org/10.1109/.2005.1469201

  24. Zhai M, Sun B, Huang K, Chang H, Liu, H.: Effect of SiO2 capping layer on the ferroelectricity of Hf0.5Zr0.5O2 films. AIP Adv. (2020);10:115320. https://doi.org/10.1063/5.0027476

  25. V. Gaddam, D. Das, S. Jeon, Insertion of HfO2 seed/dielectric layer to the ferroelectric HZO films for heightened remanent polarization in MFM capacitors. IEEE T Electron Dev. 67, 745–750 (2020). https://doi.org/10.1109/TED.2019.2961208

    Article  ADS  Google Scholar 

  26. J. Robertson, R.M. Wallace, High-K materials and metal gates for CMOS applications. Mater. Sci. Eng. R. Rep. 88, 1–41 (2015). https://doi.org/10.1016/j.mser.2014.11.001

    Article  Google Scholar 

  27. B.H. Lee, J. Oh, H.H. Tseng, R. Jammy, H. Huff, Gate stack technology for nanoscale devices. Mater. Today 9, 32–40 (2006)

    Article  Google Scholar 

  28. S. Mohsenifar, M. Shahrokhabadi, Gate stack high-κ materials for Si-based MOSFETs past, present, and futures. Microelectron Solid State Electron. 2, 5 (2015). https://doi.org/10.5923/j.msse.20150401.03

    Article  Google Scholar 

  29. D. Matsushita, K. Muraoka, K. Kato, Y. Nakasaki, S. Inumiya, K. Eguchi, M. Takayanagi, Novel fabrication process to realize ultra-thin (EOT= 0.7 nm) and ultra-low-leakage SiON gate dielectrics. Microelectron. Eng. 80, 424–431 (2005). https://doi.org/10.1109/RTP.2005.1613680

    Article  Google Scholar 

  30. Ando T, Frank M, Choi K, Choi C, Bruley J, Hopstaken M, Copel M, Cartier E, Kerber A, Callegari A. "Understanding mobility mechanisms in extremely scaled HfO2 (EOT 0.42 nm) using remote interfacial layer scavenging technique and Vt-tuning dipoles with gate-first process," 2009 IEEE International Electron Devices Meeting (IEDM).(2009):1–4. https://doi.org/10.1109/IEDM.2009.5424335

Download references

Acknowledgements

This work was supported in part by the Brain Korea 21 Four Program, Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (grant No.2023R1A6C103A035), the Technology Innovation Program (20015909) through the Korea Evaluation Institute of Industrial Technology (KEIT), funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea), Korea Basic Science Institute (National research Facilities and Equipment Center) grant funded by the Ministry of Education (grant No.2023R1A6C103A035, No.2021R1A6C101A405) and the IC Design Education Center (IDEC), Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younghyun Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Ahn, DH., An, S.U. et al. TCAD simulation study of dual ferroelectric gate field-effect transistors with a recessed channel geometry for non-volatile memory applications. J. Korean Phys. Soc. (2024). https://doi.org/10.1007/s40042-024-01079-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40042-024-01079-7

Keywords

Navigation