Skip to main content
Log in

Co-sensitization effect of chlorophyll and anthocyanin on optical absorption properties and power conversion efficiency of dye-sensitized solar cells

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this article, the chemical structure, optical absorption and photoluminescence properties of un/adsorbed dyes of hibiscus flower (H), pumpkin leaf (P), sweet potato leaf (S) and their composites (H: P & H: S) have been studied. The chemical structural properties revealed the O–H, C–C and C = O as the main anchoring functional groups. The optical absorption properties revealed two definite bands in between 450–500 nm and 600–680 nm wavelength for chlorophyll-based dyes and a peak at 526 nm for anthocyanin based dye extract. The composite dye extracts revealed optical absorption bands corresponding to chlorophyll and anthocyanin pigments with enhanced absorption of light. Five different solar cells based on H, P, S, H:P-3:1 and H:S-3:1 were developed and revealed an efficiency of ~ 0.08, 0.3, 0.5, 0.7 and ~ 1% respectively. The efficiency was reduced by half after 30 days. The composites had the highest power conversion efficiency due to more O–H, C–C and C = O binding sites on TiO2 nanoparticles, reduced rate of electron–hole pair recombination and a wide range of optical absorption. These studies suggest that co-pigmentation can be an alternative strategy to increasing the power conversion efficiency in DSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.T. Butler, J.M. Frost, A. Walsh, Ferroelectric materials for solar energy conversion: photoferroics revisited. Energy Environ. Sci. 8, 838–848 (2015). https://doi.org/10.1039/C4EE03523B

    Article  Google Scholar 

  2. E.P. Mukhokosi, M. Maaza, M. Tibenkana, N.L. Botha, L. Namanya, I.G. Madiba, M. Okullo, Optical absorption and photoluminescence properties of Cucurbita maxima dye adsorption on TiO2 nanoparticles. Mater. Res. Express. (2023). https://doi.org/10.1088/2053-1591/acce91

    Article  Google Scholar 

  3. G. Calogero, A. Bartolotta, G. Di Marco, A. Di Carlo, F. Bonaccorso, Vegetable-based dye-sensitized solar cells. Chem. Soc. Rev. 44, 3244–3294 (2015). https://doi.org/10.1039/c4cs00309h

    Article  Google Scholar 

  4. A. Omar, H. Abdullah, Electron transport analysis in zinc oxide-based dye-sensitized solar cells: a review. Renew. Sustain. Energy Rev. 31, 149–157 (2014). https://doi.org/10.1016/j.rser.2013.11.031

    Article  Google Scholar 

  5. F.W. Low, C.W. Lai, Recent developments of graphene-TiO2 composite nanomaterials as efficient photoelectrodes in dye-sensitized solar cells: a review. Renew. Sustain. Energy Rev. 82, 103–125 (2018). https://doi.org/10.1016/j.rser.2017.09.024

    Article  Google Scholar 

  6. M. Grätzel, The light and shade of perovskite solar cells. Nat. Mater. 13, 838–842 (2014). https://doi.org/10.1038/nmat4065

    Article  ADS  Google Scholar 

  7. E. Singh, H.S. Nalwa, Graphene-based dye-sensitized solar cells: a review. Sci. Adv. Mater. 7, 1863–1912 (2015). https://doi.org/10.1166/sam.2015.2438

    Article  Google Scholar 

  8. V.M. Mwalukuku, J. Liotier, A.J. Riquelme, Y. Kervella, Q. Huaulmé, A. Haurez, S. Narbey, J.A. Anta, R. Demadrille, Strategies to improve the photochromic properties and photovoltaic performances of naphthopyran dyes in dye-sensitized solar cells. Adv. Energy Mater. (2023). https://doi.org/10.1002/aenm.202203651

    Article  Google Scholar 

  9. A. Soosairaj, A. Gunasekaran, S. Anandan, L.R. Asirvatham, Synergetic effect of Leucophyllum frutescens and Ehretia microphylla dyes in enhancing the photovoltaic performance of dye-sensitized solar cells. Environ. Sci. Pollut. Res. (2023). https://doi.org/10.1007/s11356-023-26132-z

    Article  Google Scholar 

  10. S.C. Yadav, M.K. Tiwari, A. Kanwade, H. Lee, A. Ogura, P.M. Shirage, Butea monosperma, crown of thorns, red lantana camara and royal poinciana flowers extract as natural dyes for dye sensitized solar cells with improved efficiency. Electrochim. Acta 441, 141793 (2023). https://doi.org/10.1016/j.electacta.2022.141793

    Article  Google Scholar 

  11. M. Shobana, P. Balraju, P. Senthil Kumar, N. Muthukumarasamy, R. Yuvakkumar, D. Velauthapillai, Investigation on the performance of nanostructure TiO2 bi-layer as photoanode for dye sensitized solar cell application. Sustain. Energy Technol. Assessments. 52, 102295 (2022). https://doi.org/10.1016/j.seta.2022.102295

    Article  Google Scholar 

  12. M. Fallah, I. Maleki, M.R. Zamani-Meymian, Y. Abdi, Enhancing the efficiency of dye-sensitized solar cell by increasing the light trapping and decreasing the electron-hole recombination rate due to Ag@TiO2 core-shell photoanode structure. Mater. Res. Express. (2019). https://doi.org/10.1088/2053-1591/ab5c8a

    Article  Google Scholar 

  13. S.C. Ezike, C.N. Hyelnasinyi, M.A. Salawu, J.F. Wansah, A.N. Ossai, N.N. Agu, Synergestic effect of chlorophyll and anthocyanin co-sensitizers in TiO2-based dye-sensitized solar cells. Surf. Interfaces. 22, 100882 (2021). https://doi.org/10.1016/j.surfin.2020.100882

    Article  Google Scholar 

  14. S. Sathyajothi, R. Jayavel, A.C. Dhanemozhi, The fabrication of natural dye sensitized solar cell (Dssc) based on TiO2 using henna and beetroot dye extracts. Mater. Today Proc. 4, 668–676 (2017). https://doi.org/10.1016/j.matpr.2017.01.071

    Article  Google Scholar 

  15. Y. Yuniati, P.E. Elim, R. Alfanaar, H.S. Kusuma, Mahfud, Extraction of anthocyanin pigment from hibiscus sabdariffa l. By ultrasonic-assisted extraction. IOP Conf. Ser. Mater. Sci. Eng. (2021). https://doi.org/10.1088/1757-899X/1010/1/012032

    Article  Google Scholar 

  16. M.R. Munandar, A.S.R. Hakim, H.A. Puspitadindha, S.P. Andiyani, F. Nurosyid, The effect of mixing Chlorophyll-Antocyanin as a natural source dye on the efficiency of dye-sensitized solar cell (DSSC). J. Phys. Conf. Ser. (2022). https://doi.org/10.1088/1742-6596/2190/1/012042

    Article  Google Scholar 

  17. Hardeli, R. Zainul, L.P. Isara, Preparation of dye sensitized solar cell (DSSC) using anthocyanin color dyes from jengkol shell (Pithecellobium lobatum Benth.) by the gallate acid copigmentation. J. Phys. Conf. Ser. (2019). https://doi.org/10.1088/1742-6596/1185/1/012021

    Article  Google Scholar 

  18. N. Chaudhri, N. Sawhney, B. Madhusudhan, A. Raghav, M. Sankar, S. Satapathi, Effect of functional groups on sensitization of dye-sensitized solar cells (DSSCs) using free base porphyrins. J. Porphyr. Phthalocyanines. 21, 222–230 (2017). https://doi.org/10.1142/S1088424617500390

    Article  Google Scholar 

  19. A.K. Rajan, L. Cindrella, Studies on new natural dye sensitizers from Indigofera tinctoria in dye-sensitized solar cells. Opt. Mater. (Amst) 88, 39–47 (2019). https://doi.org/10.1016/j.optmat.2018.11.016

    Article  ADS  Google Scholar 

  20. S.M. Milenković, J.B. Zvezdanović, T.D. Andelković, D.Z. Marković, The identification of chlorophyll and its derivatives in the pigment mixtures: HPLC-chromatography, visible and mass spectroscopy studies. Adv. Technol. 1 (2012) 16–24. http://alfa.tf.ni.ac.rs/casopis/sveska1/c2.pdf.

  21. S. Alhorani, S. Kumar, M. Genwa, P.L. Meena, Performance of dye-sensitized solar cells extracted dye from wood apple leaves. J. Phys. Commun. (2022). https://doi.org/10.1088/2399-6528/ac8785

    Article  Google Scholar 

  22. K. Sharma, V. Sharma, S.S. Sharma, Dye-sensitized solar cells: fundamentals and current status. Nanoscale Res. Lett. (2018). https://doi.org/10.1186/s11671-018-2760-6

    Article  Google Scholar 

  23. K.C. Cho, H. Chang, C.H. Chen, M.J. Kao, X.R. Lai, A study of mixed vegetable dyes with different extraction concentrations for use as a sensitizer for dye-sensitized solar cells. Int. J. Photoenergy (2014). https://doi.org/10.1155/2014/492747

    Article  Google Scholar 

  24. S. Ananth, P. Vivek, G. Saravana Kumar, P. Murugakoothan, Performance of Caesalpinia sappan heartwood extract as photo sensitizer for dye sensitized solar cells, Spectrochim. Acta- Part A Mol. Biomol. Spectrosc. 137, 345–350 (2015). https://doi.org/10.1016/j.saa.2014.08.083

    Article  ADS  Google Scholar 

  25. F.M.M. dos Santos, A.M.B. Leite, L.R.B. da Conceição, Y. Sasikumar, R. Atchudan, M.F. Pinto, R. Suresh Babu, A.L.F. de Barros, Effect of bandgap energies by various color petals of Gerbera jamesonii flower dyes as a photosensitizer on enhancing the efficiency of dye-sensitized solar cells. J. Mater. Sci. Mater. Electron. 33, 20338–20352 (2022). https://doi.org/10.1007/s10854-022-08849-8

    Article  Google Scholar 

  26. S. Alhorani, S. Kumar, M. Genwa, P.L. Meena, Dye extracted from Bael leaves as a photosensitizer in dye sensitized solar cell. Mater. Res. Express. (2021). https://doi.org/10.1088/2053-1591/ac3aa7

    Article  Google Scholar 

  27. V.R. Netala, V.S. Kotakadi, V. Nagam, P. Bobbu, S.B. Ghosh, V. Tartte, First report of biomimetic synthesis of silver nanoparticles using aqueous callus extract of Centella asiatica and their antimicrobial activity. Appl. Nanosci. 5, 801–807 (2015). https://doi.org/10.1007/s13204-014-0374-6

    Article  ADS  Google Scholar 

  28. H.L. Hao, W.S. Wu, Y. Zhang, L.K. Wu, W.Z. Shen, Origin of blue photoluminescence from colloidal silicon nanocrystals fabricated by femtosecond laser ablation in solution. Nanotechnology (2016). https://doi.org/10.1088/0957-4484/27/32/325702

    Article  Google Scholar 

  29. W.S. Wu, H.L. Hao, Y.X. Zhang, J. Li, J.J. Wang, W.Z. Shen, Correlation between luminescence and structural evolution of colloidal silicon nanocrystals synthesized under different laser fluences. Nanotechnology 29, 025709 (2018). https://doi.org/10.1088/1361-6528/aa95a1

    Article  ADS  Google Scholar 

  30. Y. Lin, G. Lin, B. Sun, X. Guo, Nanocrystalline perovskite hybrid photodetectors with high performance in almost every figure of merit. Adv. Funct. Mater. 28, 1–11 (2018). https://doi.org/10.1002/adfm.201705589

    Article  ADS  Google Scholar 

  31. A.M.B. Leite, H.O. da Cunha, A.F.C.R. Rodrigues, R. Suresh Babu, A.L.F. de Barros, Construction and characterization of organic photovoltaic cells sensitized by Chrysanthemum based natural dye, Spectrochim. Acta- Part A Mol. Biomol. Spectrosc. 284, 121780 (2023). https://doi.org/10.1016/j.saa.2022.121780

    Article  Google Scholar 

  32. R. Rajendhiran, R. Atchudan, J. Palanisamy, A. Balasankar, T.H. Oh, V. Deivasigamani, S. Ramasundaram, Prickly pear fruit extract: capping agent for the sol-gel synthesis of discrete titanium dioxide nanoparticles and sensitizer for dye-sensitized solar cell. Coatings 13, 579 (2023). https://doi.org/10.3390/coatings13030579

    Article  Google Scholar 

  33. I.S. Mohamad, M.N. Norizan, N. Mahmed, N. Jamalullail, D.S.C. Halin, M.A.A.M. Salleh, A.V. Sandu, M.S. Baltatu, P. Vizureanu, Enhancement of power conversion efficiency with zinc oxide as photoanode and cyanococcus, Punica granatum L., and Vitis vinifera as natural fruit dyes for dye-sensitized solar cells. Coatings (2022). https://doi.org/10.3390/coatings12111781

    Article  Google Scholar 

  34. P. Hernández-Velasco, I. Morales-Atilano, M. Rodríguez-Delgado, J.M. Rodríguez-Delgado, D. Luna-Moreno, F.G. Ávalos-Alanís, J.F. Villarreal-Chiu, Photoelectric evaluation of dye-sensitized solar cells based on prodigiosin pigment derived from Serratia marcescens 11E. Dye. Pigment. (2020). https://doi.org/10.1016/j.dyepig.2020.108278

    Article  Google Scholar 

  35. I. Chandra Maurya, S. Singh, P. Srivastava, B. Maiti, L. Bahadur, Natural dye extract from Cassia fistula and its application in dye-sensitized solar cell: experimental and density functional theory studies. Opt. Mater. (Amst). 90, 273–280 (2019). https://doi.org/10.1016/j.optmat.2019.02.037

    Article  ADS  Google Scholar 

  36. S.A. Mahadik, H.M. Yadav, S.S. Mahadik, Surface properties of chlorophyll-a sensitized TiO2 nanorods for dye-sensitized solar cells applications. Colloids Interface Sci. Commun. 46, 100558 (2022). https://doi.org/10.1016/j.colcom.2021.100558

    Article  Google Scholar 

  37. O. Adedokun, O.L. Adedeji, I.T. Bello, M.K. Awodele, A.O. Awodugba, Fruit peels pigment extracts as a photosensitizer in ZnO-based dye-sensitized solar cells. Chem. Phys. Impact. 3, 100039 (2021). https://doi.org/10.1016/j.chphi.2021.100039

    Article  Google Scholar 

  38. N.Y. Amogne, D.W. Ayele, Y.A. Tsigie, Recent advances in anthocyanin dyes extracted from plants for dye sensitized solar cell. Mater. Renew. Sustain. Energy 9, 1–16 (2020). https://doi.org/10.1007/s40243-020-00183-5

    Article  Google Scholar 

  39. S. Ahmed, A. Du Pasquier, T. Asefa, D.P. Birnie, Improving microstructured TiO2 photoanodes for dye sensitized solar cells by simple surface treatment. Adv. Energy Mater. 1, 879–887 (2011). https://doi.org/10.1002/aenm.201100121

    Article  Google Scholar 

  40. M.K. Hossain, M.F. Pervez, M.N.H. Mia, A.A. Mortuza, M.S. Rahaman, M.R. Karim, J.M.M. Islam, F. Ahmed, M.A. Khan, Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells. Results Phys. 7, 1516–1523 (2017). https://doi.org/10.1016/j.rinp.2017.04.011

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Kyambogo University Competitive Research Grants, The World Academy of Sciences, United Nations Educational Scientific and Cultural Organisation (TWAS-UNESCO)-Associateship Scheme at the Centres of Excellence in the South fellowship program, the United Nations Educational, Scientific and Cultural Organisation-University of South Africa (UNESCO-UNISA) Africa, Chair in Nanosciences & Nanotechnology and the Nano-sciences African Network (NANOAFNET).

Author information

Authors and Affiliations

Authors

Contributions

Emma Panzi Mukhokosi and Mohammed Tibenkana collected, prepared and analyzed the samples. Mohammed Tibenkana wrote the first draft of the manuscript. The final manuscript was read and approved by all authors.

Corresponding author

Correspondence to Emma Panzi Mukhokosi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhokosi, E.P., Mohammed, T., Loyce, N. et al. Co-sensitization effect of chlorophyll and anthocyanin on optical absorption properties and power conversion efficiency of dye-sensitized solar cells. J. Korean Phys. Soc. (2024). https://doi.org/10.1007/s40042-024-01070-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40042-024-01070-2

Keywords

Navigation