Skip to main content
Log in

Pion–nucleus elastic scatterings incorporating medium effects within the Eikonal–Glauber model

  • Original Paper - Particles and Nuclei
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this present investigation, we explore the elastic scattering of pions with nuclei (πA), primarily influenced by the \(\Delta\)(1232) resonance, within the Eikonal–Glauber model. The medium effects are incorporated by considering nuclear-density (\(\rho _A\)) dependent masses of baryons and strong coupling constants. These dependencies are computed and parameterized up to \(\mathcal {O}(\rho _A^2)\) based on the quark–meson coupling (QMC) model. The Wood–Saxon type density profile is utilized for the bound nucleons within finite nuclei. The element \(\pi ^+\)-N scattering cross-section for the Glauber approach is determined using the conventional effective Lagrangian method. Subsequently, we analyze the total cross-sections for elastic scattering with \(^4\)He and \(^{12}\)C targets. Our numerical results demonstrate a favorable agreement with JINR data for the \(^4\)He target, accurately reproducing the total cross-section. However, when considering the \(^{12}\)C target, deviations of approximately \(\lesssim 10\%\). We also consider the multiple-scattering effects inside the nucleus approximately, using the single-channel meson-baryon Bethe–Salpeter equation, resulting in the effective width-broadening of the \(\Delta\) resonance to reproduce the data better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Serber, Phys. Rev. 72, 1114–1115 (1947). https://doi.org/10.1103/PhysRev.72.1114

    Article  ADS  Google Scholar 

  2. S. Fernbach, R. Serber, T.B. Taylor, Phys. Rev. 75, 1352–1355 (1949). https://doi.org/10.1103/PhysRev.75.1352

    Article  ADS  Google Scholar 

  3. R.H. Landau, A.W. Thomas, Nucl. Phys. A 302, 461–492 (1978). https://doi.org/10.1016/0375-9474(78)90335-4

    Article  ADS  Google Scholar 

  4. M.K. Khankhasayev, Czech. J. Phys. 39, 836–842 (1989). https://doi.org/10.1007/BF01599196

    Article  ADS  Google Scholar 

  5. V.Y. Aleksakhin et al., Phys. Rev. C 57, 2409–2415 (1998). https://doi.org/10.1103/PhysRevC.57.2409

    Article  ADS  Google Scholar 

  6. T.S.H. Lee, R.P. Redwine, Ann. Rev. Nucl. Part. Sci. 52, 23–63 (2002). https://doi.org/10.1146/annurev.nucl.52.050102.090713

    Article  ADS  Google Scholar 

  7. H.J. Weyer, Phys. Rept. 195, 295–367 (1990). https://doi.org/10.1016/0370-1573(90)90076-E

    Article  ADS  Google Scholar 

  8. J. Golak et al., Phys. Rev. C 106(6), 064003 (2022). https://doi.org/10.1103/PhysRevC.106.064003

    Article  ADS  Google Scholar 

  9. J.A. Carr, H. McManus, K. Stricker-Bauer, Phys. Rev. C 25, 952–961 (1982). https://doi.org/10.1103/PhysRevC.25.952

    Article  ADS  Google Scholar 

  10. R. Seki, K. Masutani, Phys. Rev. C 27, 2799–2816 (1983). https://doi.org/10.1103/PhysRevC.27.2799

    Article  ADS  Google Scholar 

  11. D.S. Koltun, T. Mizutani, Phys. Rev. C 22, 1657–1669 (1980). https://doi.org/10.1103/PhysRevC.22.1657

    Article  ADS  Google Scholar 

  12. M. Hirata, J.H. Koch, F. Lenz, E.J. Moniz, Phys. Lett. B 70, 281–284 (1977). https://doi.org/10.1016/0370-2693(77)90658-X

    Article  ADS  Google Scholar 

  13. B.K. Jennings, E.A. Veit, A.W. Thomas, Phys. Lett. B 148, 28–30 (1984). https://doi.org/10.1016/0370-2693(84)91603-4

    Article  ADS  Google Scholar 

  14. A.W. Thomas, Adv. Nucl. Phys. 13, 1–137 (1984)

    Google Scholar 

  15. V. Tsaran, M. Vanderhaeghen, [arXiv:2403.08608] [nucl-th]

  16. H.A. Bethe, Phys. Rev. 57, 1125–1144 (1940). https://doi.org/10.1103/PhysRev.57.1125

    Article  ADS  Google Scholar 

  17. R. Buchle et al., Nucl. Phys. A 515, 541–570 (1990)

    Article  ADS  Google Scholar 

  18. P.A.M. Guichon, Phys. Lett. B 200, 235–240 (1988). https://doi.org/10.1016/0370-2693(88)90762-9

    Article  ADS  Google Scholar 

  19. K. Saito, K. Tsushima, A.W. Thomas, Prog. Part. Nucl. Phys. 58, 1–167 (2007). https://doi.org/10.1016/j.ppnp.2005.07.003

    Article  ADS  Google Scholar 

  20. P.T.P. Hutauruk, Y. Oh, K. Tsushima, Phys. Rev. C 99(1), 015202 (2019). https://doi.org/10.1103/PhysRevC.99.015202

    Article  ADS  Google Scholar 

  21. P.T.P. Hutauruk, K. Tsushima, [arXiv:1910.08133] [nucl-th]

  22. P.T.P. Hutauruk, J.J. Cobos-Martínez, Y. Oh, K. Tsushima, Phys. Rev. D 100(9), 094011 (2019). https://doi.org/10.1103/PhysRevD.100.094011

    Article  ADS  Google Scholar 

  23. J.R. Stone, P.A.M. Guichon, P.G. Reinhard, A.W. Thomas, Phys. Rev. Lett. 116(9), 092501 (2016). https://doi.org/10.1103/PhysRevLett.116.092501

    Article  ADS  Google Scholar 

  24. H.D. Han, P.T.P. Hutauruk, S.I. Nam, Mod. Phys. Lett. A 37(32), 2250218 (2022). https://doi.org/10.1142/S0217732322502182

    Article  ADS  Google Scholar 

  25. Y.A. Shcherbakov et al., Nuovo Cim. A 31, 249 (1976)

    Article  ADS  Google Scholar 

  26. D. Ashery, I. Navon, G. Azuelos, H.K. Walter, H.J. Pfeiffer, F.W. Schleputz, Phys. Rev. C 23, 2173–2185 (1981)

    Article  ADS  Google Scholar 

  27. R.D. Woods, D.S. Saxon, Phys. Rev. 95, 577–578 (1954). https://doi.org/10.1103/PhysRev.95.577

    Article  ADS  Google Scholar 

  28. R.J. Glauber, in High-energy physics and nuclear structure. ed. by S. Devons (Springer, Boston, 1970). https://doi.org/10.1007/978-1-4684-1827-9_43

  29. R. J. Glauber, W. E. Brittin, L. C. Dunham, Eds., Interscience, Vol. 1, New York, 315 (1959)

  30. M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57, 205–243 (2007). https://doi.org/10.1146/annurev.nucl.57.090506.123020

    Article  ADS  Google Scholar 

  31. G. Goldstein, D. Baye, P. Capel, Phys. Rev. C 73, 024602 (2006). https://doi.org/10.1103/PhysRevC.73.024602

    Article  ADS  Google Scholar 

  32. C.W. De Jager et al., Atom. Data Nucl. Data Tabl. 14, 479–508 (1974)

    Article  ADS  Google Scholar 

  33. H. De Vries, C.W. De Jager, C. De Vries, Atom. Data Nucl. Data Tabl. 36, 495–536 (1987)

    Article  ADS  Google Scholar 

  34. A.B. Larionov, U. Mosel, Nucl. Phys. A 728, 135–164 (2003). https://doi.org/10.1016/j.nuclphysa.2003.08.005

    Article  ADS  Google Scholar 

  35. Y. Cui, Y.X. Zhang, Z.X. Li, Chin. Phys. C 45(4), 044109 (2021). https://doi.org/10.1088/1674-1137/abe10e

    Article  ADS  Google Scholar 

  36. D.H. Lu, A.W. Thomas, K. Tsushima, arXiv:nucl-th/0112001 [nucl-th]

  37. P. Kienle, T. Yamazaki, Prog. Part. Nucl. Phys. 52, 85–132 (2004). https://doi.org/10.1016/j.ppnp.2003.09.001

    Article  ADS  Google Scholar 

  38. T.E.O. Ericson, W. Weise, Clarendon Press, 1988, ISBN 978-0-19-852008-5 https://inspirehep.net/literature/269218

  39. A.M. Gasparyan, J. Haidenbauer, C. Hanhart, J. Speth, Phys. Rev. C 68, 045207 (2003). https://doi.org/10.1103/PhysRevC.68.045207

    Article  ADS  Google Scholar 

  40. G. Janssen, K. Holinde, J. Speth, Phys. Rev. C 54, 2218–2234 (1996). https://doi.org/10.1103/PhysRevC.54.2218

    Article  ADS  Google Scholar 

  41. T. Inoue, E. Oset, M.J. Vicente-Vacas, Phys. Rev. C 65, 035204 (2002)

    Article  ADS  Google Scholar 

  42. S.I. Nam, H.C. Kim, T. Hyodo, D. Jido, A. Hosaka, J. Korean Phys. Soc. 45, 1466 (2004)

    Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from Pukyong National University (PKNU) (2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-il Nam.

Ethics declarations

Conflict of interest

The authors declare no competing interests. Seung-il Nam is an Executive Editor of Journal of the Korean Physical Society. Executive Editor status has no bearing on editorial consideration.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Hd., Hutauruk, P.T.P. & Nam, Si. Pion–nucleus elastic scatterings incorporating medium effects within the Eikonal–Glauber model. J. Korean Phys. Soc. 84, 743–749 (2024). https://doi.org/10.1007/s40042-024-01056-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-024-01056-0

Keywords

Navigation