Skip to main content
Log in

Measurement of refractive indices and absorption coefficients for glass materials and nematic liquid crystals in THz frequency band

  • Original Paper - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Many optical devices that can be used in terahertz (THz) systems are continuously being researched and developed. Among them, liquid crystal (LC)-based polarizers and phase-shifting devices have been developed. The LC devices used in the THz systems are fabricated in the form of a cell. The substrate of the cell should be transparent and non-birefringent with low absorption in the THz frequency range. In this paper, we report the refractive indices and birefringence measurement results for glass materials, such as slide glass, cover glass, A-cut quartz, and Z-cut quartz in the THz band. Among them, 5CB and E7 nematic LC (NLC) cells are prepared using Z-cut quartz as a substrate. We report the results of the refractive indices, absorption coefficients, and birefringence measurements of each NLC cell in the THz band. It is expected that this result can be used as a LC-based optical device in the THz band in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Menikh, R. MacColl, C.A. Mannella, X.C. Zhang, Terahertz biosensing technology: frontiers and progress. ChemPhysChem 3, 655–658 (2002). https://doi.org/10.1002/1439-7641(20020816)3:8%3c655::AID-CPHC655%3e3.0.CO;2-W

    Article  Google Scholar 

  2. K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11, 2549–2554 (2003). https://doi.org/10.1364/OE.11.002549

    Article  ADS  Google Scholar 

  3. J.F. Federici, B. Schulkin, F. Huang et al., THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol. 20, S266–S280 (2005). https://doi.org/10.1088/0268-1242/20/7/018

    Article  Google Scholar 

  4. K.-H. Kim, D.H. Song, Z.-G. Shen, B.W. Park, K.-H. Park, J.-H. Lee, T.-H. Yoon, Fast switching of long-pitch cholesteric liquid crystal device. Opt. Express 19, 10174–10179 (2011). https://doi.org/10.1364/OE.19.010174

    Article  ADS  Google Scholar 

  5. M.O. Ko, S.-J. Kim, J.-H. Kim, B.W. Lee, M.Y. Jeon, Dynamic measurement for electric field sensor based on wavelength-swept laser. Opt. Express 22, 16139–16147 (2014). https://doi.org/10.1364/OE.22.016139

    Article  ADS  Google Scholar 

  6. M.O. Ko, S.-J. Kim, J.-H. Kim, M.Y. Jeon, In situ observation of dynamic pitch jumps of in-planar cholesteric liquid crystal layers based on wavelength-swept laser. Opt. Express 26, 28751–28762 (2018). https://doi.org/10.1364/OE.26.028751

    Article  ADS  Google Scholar 

  7. R. Ozaki, K. Kihara, K. Matsuura, K. Kadowaki, T.Q. Duong, H. Moritake, Wavelength and bandwidth control of stop band of ferroelctric liquid crystals by varying incident angle and electric field. Appl. Phys. Express 13, 051003 (2020). https://doi.org/10.35848/1882-0786/ab88c8

    Article  ADS  Google Scholar 

  8. S. Ahn, M.O. Ko, J.-H. Kim, Z. Chen, M.Y. Jeon, Characterization of second-order reflection bands from a cholesteric liquid crystal cell based on a wavelength-swept laser. Sensors 20, 4643 (2020). https://doi.org/10.3390/s20164643

    Article  ADS  Google Scholar 

  9. H.D. Hristov, J.M. Rodriguez, W. Grote, The grooved-dielectric Fresnel zone plate: an effective terahertz lens and antenna. Microw. Opt. Technol. Lett. 54, 1343–1348 (2012). https://doi.org/10.1002/mop.26812

    Article  Google Scholar 

  10. T. Niu, W. Withayachumnankul, A. Upadhyay et al., Terahertz reflectarray as a polarizing beam splitter. Opt. Express 22, 16148–16160 (2014). https://doi.org/10.1364/OE.22.016148

    Article  ADS  Google Scholar 

  11. J.B. Masson, G. Gallot, Terahertz achromatic quarter-wave plate. Opt. Lett. 31, 265–267 (2006). https://doi.org/10.1364/OL.31.000265

    Article  ADS  Google Scholar 

  12. P.-Y. Chen, C. Argyropoulos, A. Alu, Terahertz antenna phase shifters using integrally-gated graphene transmission-lines. IEEE Trans. Antennas Propag. 61, 1528–1537 (2013). https://doi.org/10.1109/TAP.2012.2220327

    Article  ADS  Google Scholar 

  13. J.H. Shi, Z.J. Li, D.K. Sang et al., THz photonics in two dimensional materials and metamaterials: properties, devices and prospects. J. Mater. Chem. C 6, 1291–1306 (2018). https://doi.org/10.1039/C7TC05460B

    Article  Google Scholar 

  14. A.I. Hernandez-Serrano, Q. Sun, E.G. Bishop et al., Design and fabrication of 3-D printed conductive polymer structures for THz polarization control. Opt. Express 27, 11635–11641 (2019). https://doi.org/10.1364/OE.27.011635

    Article  ADS  Google Scholar 

  15. R.T. Ako, A. Upadhyay, W. Withayachumnankul et al., Dielectrics for terahertz metasurfaces: material selection and fabrication techniques. Adv. Opt. Mater. (2020). https://doi.org/10.1002/adom.201900750

    Article  Google Scholar 

  16. C.-Y. Chen, T.-R. Tsai, C.-L. Pan, R.-P. Pan, Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals. Appl. Phys. Lett. 83, 4497–4499 (2003). https://doi.org/10.1063/1.1631064

    Article  ADS  Google Scholar 

  17. C.-F. Hsieh, R.-P. Pan, T.-T. Tang et al., Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate. Opt. Lett. 31, 1112–1112 (2006). https://doi.org/10.1364/OL.31.001112

    Article  ADS  Google Scholar 

  18. J. Yang, C.G. Cai, Z.P. Yin et al., Reflective liquid crystal terahertz phase shifter with tuning range of over 360°. IET Microw. Antenna 12, 1466–1469 (2018). https://doi.org/10.1049/iet-map.2017.0898

    Article  Google Scholar 

  19. M. Naftaly, R.E. Miles, Terahertz time-domain spectroscopy: a new tool for the study of glasses in the far infrared. J. Non-Cryst. Solids 351, 3341–3346 (2005). https://doi.org/10.1016/j.jnoncrysol.2005.08.003

    Article  ADS  Google Scholar 

  20. K. Kanehara, S. Urata, S. Yasuhara et al., Dielectric property and polarization mechanism of sodium silicate glass in GHz-THz range. Jpn. J. Appl. Phys.. J. Appl. Phys. (2022). https://doi.org/10.35848/1347-4065/ac7b0f

    Article  Google Scholar 

  21. M.C. Beard, G.M. Turner, C.A. Schmuttenmaer, Terahertz spectroscopy. J. Phys. Chem. B 106, 7146–7159 (2002). https://doi.org/10.1021/jp020579i

    Article  Google Scholar 

  22. H. Choi, J. Kim, S. Ahn et al., Characterization of the THz absorption spectra of nematic liquid crystals via THz time-domain spectroscopy using mode-locked Yb-doped fiber laser. Opt. Fiber Technol.Fiber Technol. (2021). https://doi.org/10.1016/j.yofte.2021.102685

    Article  Google Scholar 

  23. X. Xin, H. Altan, A. Saint et al., Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature. J. Appl. Phys. 100, 094905–094905 (2006). https://doi.org/10.1063/1.2357412

    Article  ADS  Google Scholar 

  24. L. Duvillaret, F. Garet, J.L. Coutaz, A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2, 739–746 (1996). https://doi.org/10.1109/2944.571775

    Article  ADS  Google Scholar 

  25. L. Ghivelder, W.A. Phillips, Far infrared-absorption in disordered solids. J. Non-Cryst. Solids 109, 280–288 (1989). https://doi.org/10.1016/0022-3093(89)90041-0

    Article  ADS  Google Scholar 

  26. S.A. Jewell, E. Hendry, T.H. Isaac, J.R. Sambles, Tuneable Fabry-Perot etalon for terahertz radiation. New J. Phys. (2008). https://doi.org/10.1088/1367-2630/10/3/033012

    Article  Google Scholar 

  27. C.-S. Yang, C.-J. Lin, R.-P. Pan et al., The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range. J. Opt. Soc. America B 27, 1866–1866 (2010). https://doi.org/10.1364/JOSAB.27.001866

    Article  ADS  Google Scholar 

  28. H. Park, E.P. Parrott, F. Fan et al., Evaluating liquid crystal properties for use in terahertz devices. Opt. Express 20, 11899–11905 (2012). https://doi.org/10.1364/OE.20.011899

    Article  ADS  Google Scholar 

  29. T.-R. Tsai, C.-Y. Chen, C.-L. Pan et al., Terahertz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB. Appl. Opt. 42, 2372–2372 (2003). https://doi.org/10.1364/AO.42.002372

    Article  ADS  Google Scholar 

  30. R.-P. Pan, C.-F. Hsieh, C.-L. Pan, C.-Y. Chen, Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range. J. Appl. Phys. 103, 093523–093523 (2008). https://doi.org/10.1063/1.2913347

    Article  ADS  Google Scholar 

  31. N. Vieweg, M.K. Shakfa, B. Scherger et al., THz properties of nematic liquid crystals. J Infrared Millim Te 31, 1312–1320 (2010). https://doi.org/10.1007/s10762-010-9721-1

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by research fund of Chungnam National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Yong Jeon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.S., Kwon, Y.S., Ahn, S. et al. Measurement of refractive indices and absorption coefficients for glass materials and nematic liquid crystals in THz frequency band. J. Korean Phys. Soc. (2024). https://doi.org/10.1007/s40042-024-01055-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40042-024-01055-1

Keywords

Navigation