Skip to main content
Log in

The combined current drive of the lower hybrid wave and the high harmonic fast wave under the influence of the radial transport of fast electrons

  • Original Paper - Fluids, Plasma and Phenomenology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The combined current drive (CD) of the lower hybrid wave (LHW) and the high harmonic fast wave (HHFW) is investigated theoretically under the influence of the radial transport of fast electrons in DIII-D. The simulation results show that the combined CD of the LHW and the HHFW has a significant synergy effect even though the radial transport of fast electrons is considered. Positive or negative synergy effects occur in current driven by the combined LHW and HHFW when different frequencies and parallel refractive indices of the LHW and the HHFW are adopted. The relatively ideal total driven current is 375 kA with a synergy current of 150 kA, and the synergy factor for the driven current is 1.66. In addition, it is found that the synergy effect is not limited to the CD but also has a positive synergy effect on the power deposition. The additional deposition power not only accelerates more electrons in the parallel direction and forms a larger driven current, but it also plays a role in the acceleration of electrons in the vertical direction, which may also have a synergy effect on the heating of the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.T. Bonoli et al., Phys. Plasmas 15, 056117 (2008). https://doi.org/10.1063/1.2904569

    Article  ADS  Google Scholar 

  2. P.T. Bonoli, Phys. Plasmas 21, 061508 (2014). https://doi.org/10.1063/1.4884360

    Article  ADS  Google Scholar 

  3. N.J. Fisch, Rev. Mod. Phys. 59, 175 (1987). https://doi.org/10.1103/RevModPhys.59.175

    Article  ADS  Google Scholar 

  4. H. Torreblanca et al., Fusion Eng. Des. 146, 626 (2019). https://doi.org/10.1016/j.fusengdes.2019.01.039

    Article  Google Scholar 

  5. C. Lau et al., AIP Conf. Proc. 1689, 080011 (2015). https://doi.org/10.1063/1.4936534

    Article  Google Scholar 

  6. T. Kojima, T. Okuda, S. Taka, Plasma Phys. 25, 1469 (1983). https://doi.org/10.1088/0032-1028/25/12/313

    Article  ADS  Google Scholar 

  7. M.K. Paul, D. Bora, Phys. Plasmas 14, 082507 (2007). https://doi.org/10.1063/1.2762130

    Article  ADS  Google Scholar 

  8. J.L. Luxon, Nucl. Fusion. Fusion 42, 614 (2002). https://doi.org/10.1088/0029-5515/42/5/313

    Article  ADS  Google Scholar 

  9. R. Prater et al., Nucl. Fusion. Fusion 54, 083024 (2014). https://doi.org/10.1088/0029-5515/54/8/083024

    Article  ADS  Google Scholar 

  10. J. Hillairet et al., EPJ Web Conf. 157, 02012 (2017). https://doi.org/10.1051/epjconf/201715702012

    Article  Google Scholar 

  11. L. Yin et al., Nucl. Fusion. Fusion 62, 066023 (2022). https://doi.org/10.1088/1741-4326/ac555d

    Article  ADS  Google Scholar 

  12. N. Bertelli et al., Plasma Phys. Control. Fusion 55, 074003 (2013). https://doi.org/10.1088/0741-3335/55/7/074003

    Article  ADS  Google Scholar 

  13. G.M. Wallace et al., Phys. Plasmas 17, 082508 (2010). https://doi.org/10.1063/1.3465662

    Article  ADS  Google Scholar 

  14. D.A. Monticello, Fusion Technol. 23, 362 (2017). https://doi.org/10.13182/fst93-a30167

    Article  ADS  Google Scholar 

  15. Y.V. Petrov, R.W. Harvey, Plasma Phys. Control. Fusion 58, 115001 (2016). https://doi.org/10.1088/0741-3335/58/11/115001

    Article  ADS  Google Scholar 

  16. R.W. Harvey et al., Nucl. Fusion. Fusion 59, 106046 (2019). https://doi.org/10.1088/1741-4326/ab38cb

    Article  ADS  Google Scholar 

  17. C.F. Kennel, F. Engelmann, Phys. Fluids 9, 2377 (1966). https://doi.org/10.1063/1.1761629

    Article  ADS  Google Scholar 

  18. R.W. Harvey et al., Phys. Rev. Lett. 88, 205001 (2002). https://doi.org/10.1103/PhysRevLett.88.205001

    Article  ADS  Google Scholar 

  19. Y. Peysson, Plasma Phys. Control. Fusion 35, B253 (1993). https://doi.org/10.1088/0741-3335/35/sb/021

    Article  ADS  Google Scholar 

  20. ITER Physics Expert Group on Confinement and Transport et al., Nucl. Fusion. Fusion. 39, 2175 (1999). https://doi.org/10.1088/0029-5515/39/12/302

    Article  ADS  Google Scholar 

  21. K. Krushelnick, M. Mauel, Phys. Plasmas 30, 090401 (2023). https://doi.org/10.1063/5.0169071

    Article  ADS  Google Scholar 

  22. L.L. Lao et al., Nucl. Fusion. Fusion 25, 1611 (1985). https://doi.org/10.1088/0029-5515/25/11/007

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the DIII-D group gratefully for their support. This work received assistance from the National Magnetic Confinement Fusion Program of China with Grant Nos. 2018YFE0311300 and 2022YFE03090001 and the National Natural Science Foundation of China under Grant Nos. 12075114 and 12375220. This study was funded by the Natural Science Foundation of Hunan Province, No.2022JJ50157 and PhD research startup foundation No. 190XQD123 as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Yin, L., Zheng, P. et al. The combined current drive of the lower hybrid wave and the high harmonic fast wave under the influence of the radial transport of fast electrons. J. Korean Phys. Soc. 84, 618–625 (2024). https://doi.org/10.1007/s40042-024-01043-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-024-01043-5

Keywords

Navigation