Skip to main content
Log in

A stochastic susceptible-infected-susceptible epidemic model with Stratonovich processes

  • Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigate the susceptible-infected-susceptible (SIS) epidemic model under fluctuating random environments. We consider the effect of uncertainty in estimation of parameters in the SIS model, the infection rate and the recovery rate, by using the technique of parameter perturbation. Previous works on parameter perturbation employed the Itô stochastic differential equation (SDE) to examine the effect of environmental stochasticity and found that epidemic thresholds occur at the reduced value of the basic reproduction number by the amount proportional to the variance of the perturbation. We employ the Stratonovich SDE, which seems to be more applicable for parameter perturbation in the epidemic model as well as the Itô SDE and find that the effect of environmental stochasticity in the Stratonovich SDE vanishes when the fluctuation is Gaussian, whereas the effect in the Itô SDE is proportional to the variance. Furthermore we carry out numerical simulations in the form of the Gillespie algorithm and find that the results of simulations are consistent with the analytic predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Rev. Mod. Phys. 87, 925 (2015)

    Article  ADS  Google Scholar 

  2. M.J. Keeling, P. Rohani, Modeling Infectious Diseases in Humans and Animals (Princeton University Press, Princeton, 2007)

    Google Scholar 

  3. R.M. Anderson, R.M. May, Infectious Diseases in Humans (Oxford University Press, Oxford, 1992)

    Google Scholar 

  4. F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Texts in Applied Mathematics Vol. 40, 2nd edn (Springer, New York, 2010)

  5. R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)

    Article  ADS  Google Scholar 

  6. R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 63, 066117 (2001)

    Article  ADS  Google Scholar 

  7. K.T.D. Eames, M.J. Keeling, Proc. Natl. Acad. Sci. U.S.A. 99, 13330 (2002)

    Article  ADS  Google Scholar 

  8. I.Z. Kiss, G. Röst, Z. Vizi, Phys. Rev. Lett. 115, 078701 (2015)

    Article  ADS  Google Scholar 

  9. P. Van Mieghem, J. Omic, R. Kooij, I.E.E.E.A.C.M. Trans, Netw. 17, 1 (2009)

    Google Scholar 

  10. C. Granell, S. Gómez, A. Arenas, Phys. Rev. Lett. 111, 128701 (2013)

    Article  ADS  Google Scholar 

  11. R. Parshani, S. Carmi, S. Havlin, Phys. Rev. Lett. 104, 258701 (2010)

    Article  ADS  Google Scholar 

  12. H. Hong, M. Ha, H. Park, Phys. Rev. Lett. 98, 258701 (2007)

    Article  ADS  Google Scholar 

  13. S. Kwon, Y. Kim, Phys. Rev. E 87, 012813 (2013)

    Article  ADS  Google Scholar 

  14. S. Kwon, J.-M. Kim, J. Stat. Mech., P08004 (2014)

  15. J. Marro, R. Dickman, Nonequilibrium Phase Transitions in Lattice Models (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  16. H. Hinrichsen, Adv. Phys. 49, 815 (2010)

    Article  ADS  Google Scholar 

  17. M. Henkel, H. Hinrichsen, S. Lübeck, Non-Equilibrium Phase Transitions Vol. I: Absorbing Phase Transitions (Springer, New York, 2009)

  18. C.W. Gardiner, Handbook of Stochastic Methods, 4th edn. (Springer, Berlin, 2009)

    Google Scholar 

  19. Y.-G. Kang, J.-M. Park, J. Korean Phys. Soc. 71, 528 (2017)

    Article  ADS  Google Scholar 

  20. J.-M. Park, J. Korean Phys. Soc. 73, 1219 (2018)

    Article  ADS  Google Scholar 

  21. A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, SIAM, J. Appl. Math. 71, 876 (2011)

  22. S. Cai, Y. Cai, X. Mao, J. Math. Anal. Appl. 474, 1536 (2019)

    Article  MathSciNet  Google Scholar 

  23. S. Cai, Y. Cai, X. Mao, Nonlinear Dyn. 97, 2175 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

YGK is supported by a Hanshin University research grant. JMP is supported by the Catholic University of Korea research fund 2023 and by the Basic Science Research Program through the National Research Foundation of Korea (Grant No. NRF-2022R1F1A1063639).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Man Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, YG., Park, JM. A stochastic susceptible-infected-susceptible epidemic model with Stratonovich processes. J. Korean Phys. Soc. 84, 158–163 (2024). https://doi.org/10.1007/s40042-023-00992-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00992-7

Keywords

Navigation