Skip to main content
Log in

A theoretical approach to study the thermal impact of the DC and RF characteristics of a MgZnO/ZnO HEMT

  • Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this work, a new current model of the MgZnO/ZnO high electron mobility transistors (HEMTs) has been developed considering the exact velocity-field characteristics of electrons in ZnO. The drain current of the device has been studied with reference to different applied potentials. The other device parameters, such as drain conductance, mutual conductance, cut-off frequency, and maximum operating frequency, are also calculated and their variations with different device parameters are studied. In addition, the variation of drain current with respect to ambient temperature and mole fraction of MgZnO have been studied and the results are reported. It has been noticed from our study that device characteristics depend significantly on the shift of temperature as well as the mole fraction of MgZnO. Finally, the theoretical results are compared with the experimental data reported earlier to crosscheck the validity of this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.C. Look, Recent advances in ZnO materials and devices. Mater. Sci. Eng. B 80(1–3), 383–387 (2001). https://doi.org/10.1016/S0921-5107(00)00604-8

    Article  Google Scholar 

  2. D.C. Look, Progress in ZnO materials and devices. J. Electron. Mater. 35, 1299–1305 (2006). https://doi.org/10.1007/s11664-006-0258-y

    Article  ADS  CAS  Google Scholar 

  3. K. Ding, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Morkoç, E. Šermukšnis, A. Matulionis, High-performance BeMgZnO/ZnO heterostructure field-effect transistors. Phys. Status Solidi (RRL) Rapid Res. Lett. 14(12), 2000371 (2020). https://doi.org/10.1002/pssr.202000371

    Article  ADS  CAS  Google Scholar 

  4. S. Choi, D.J. Rogers, E.V. Sandana, P. Bove, F.H. Teheran, C. Nenstiel, A. Hoffmann, R. McClintock, M. Razeghi, D. Look, A. Gentle, Radiative recombination of confined electrons at the MgZnO/ZnO heterojunction interface. Sci. Rep. 7, 7457 (2017). https://doi.org/10.1038/s41598-017-07568-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Z. Li, P. Wang, J. He, H. Chen, J. Cheng, Effect of polarization on the performance of ZnO/MgZnO quantum cascade detector. Superlattices Microstruct. 111, 852–861 (2017). https://doi.org/10.1016/j.spmi.2017.07.046

    Article  ADS  CAS  Google Scholar 

  6. Y. Kozuka, A. Tsukazaki, M. Kawasaki, Challenges and opportunities of ZnO-related single crystalline heterostructures. Appl. Phys. Rev. 1(1), 011303 (2014). https://doi.org/10.1063/1.4853535

    Article  ADS  CAS  Google Scholar 

  7. X. Zhao, D. Jiang, M. Zhao, Y. Duan, Avalanche effect and high external quantum efficiency in MgZnO/Au/ZnO sandwich structure photodetector. Adv. Opt. Mater. 9(8), 2002023 (2021). https://doi.org/10.1002/adom.202002023

    Article  CAS  Google Scholar 

  8. V.S. Rana, J.K. Rajput, T.K. Pathak, L.P. Purohit, Multilayer MgZnO/ZnO thin films for UV photodetectors. J. Alloy. Compd. 764, 724–729 (2018). https://doi.org/10.1016/j.jallcom.2018.06.139

    Article  CAS  Google Scholar 

  9. J.D. Hwang, C.C. Yang, C.M. Chu, MgZnO/ZnO two-dimensional electron gas photodetectors fabricated by radio frequency sputtering. ACS Appl. Mater. Interfaces 9(28), 23904–23908 (2017). https://doi.org/10.1021/acsami.7b03201

    Article  CAS  PubMed  Google Scholar 

  10. D. Srikanya, A.M. Bhat, C. Sahu, Design and analysis of high-performance double-gate ZnO nano-structured thin-film ISFET for pH sensing applications. Microelectron. J. 137, 105811 (2023). https://doi.org/10.1016/j.mejo.2023.105811

    Article  CAS  Google Scholar 

  11. S. Sasa, T. Hayafuji, M. Kawasaki, K. Koike, M. Yano, M. Inoue, Improved stability of high-performance ZnO/ZnMgO hetero-MISFETs. IEEE Electron Device Lett. 28(7), 543–545 (2007). https://doi.org/10.1109/LED.2007.899448

    Article  ADS  CAS  Google Scholar 

  12. T. Takagi, H. Tanaka, S. Fujita, S. Fujita, Molecular beam epitaxy of high magnesium content single-phase wurzite MgxZn1-xO alloys (x≃ 0.5) and their application to solar-blind region photodetectors. Jpn. J. Appl. Phys. 42(4B), L401 (2003). https://doi.org/10.1143/JJAP.42.401

    Article  ADS  CAS  Google Scholar 

  13. H.P. Zhou, M. Xu, W.Z. Shen, Anomalous temperature dependence of optical properties of cubic MgZnO: effect of carrier localization. Physica B Condens Matter 403(19–20), 3585–3588 (2008). https://doi.org/10.1016/j.physb.2008.05.034

    Article  ADS  CAS  Google Scholar 

  14. H.A. Chin, I.C. Cheng, C.I. Huang, Y.R. Wu, W.S. Lu, W.L. Lee, J.Z. Chen, K.C. Chiu, T.S. Lin, Two dimensional electron gases in polycrystalline MgZnO/ZnO heterostructures grown by rf-sputtering process. J. Appl. Phys. 108(5), 054503 (2010). https://doi.org/10.1063/1.3475500

    Article  ADS  CAS  Google Scholar 

  15. R. Singh, M.A. Khan, P. Sharma, M.T. Htay, A. Kranti, S. Mukherjee, Two-dimensional electron gases in MgZnO/ZnO and ZnO/MgZnO/ZnO heterostructures grown by dual ion beam sputtering. J. Phys. D Appl. Phys. 51(13), 13LT02 (2018). https://doi.org/10.1088/1361-6463/aab183

    Article  CAS  Google Scholar 

  16. Y.K. Verma, V. Mishra, P.K. Verma, S.K. Gupta, Analytical modelling and electrical characterisation of ZnO based HEMTs. Int. J. Electron. 106(5), 707–720 (2019). https://doi.org/10.1080/00207217.2018.1545931

    Article  CAS  Google Scholar 

  17. Y.K. Verma, V. Mishra, S. Gupta, A physics-based analytical model for MgZnO/ZnO HEMT. J. Circuits Syst. Comput. 29(01), 2050009 (2020). https://doi.org/10.1142/S0218126620500097

    Article  Google Scholar 

  18. P. Wang, S. Ma, L. Guo, T. Shang, Z. Song, Y. Yang, Theoretical investigation of the impact of barrier thickness fluctuation scattering on transport characteristics in undoped MgZnO/ZnO heterostructures. Jpn. J. Appl. Phys. 54(9), 091102 (2015). https://doi.org/10.7567/JJAP.54.091102

    Article  ADS  CAS  Google Scholar 

  19. R. Singh, M.A. Khan, S. Mukherjee, A. Kranti, Analytical Model for 2DEG Density in graded MgZnO/ZnO Heterostructures with cap Layer. IEEE Trans. Electron Devices 64(9), 3661–3667 (2017). https://doi.org/10.1109/TED.2017.2721437

    Article  ADS  CAS  Google Scholar 

  20. P. Kumar, S. Chaudhary, M.A. Khan, S. Kumar and S. Mukherjee, Analytical study of ZnO-based HEMT for power switching. https://doi.org/10.21203/rs.3.rs-1140403/v1

  21. S.S. Shinde, P.S. Shinde, S.M. Pawar, A.V. Moholkar, C.H. Bhosale, K.Y. Rajpure, Physical properties of transparent and conducting sprayed fluorine doped zinc oxide thin films. Solid State Sci. 10(9), 1209–1214 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.11.031

    Article  ADS  CAS  Google Scholar 

  22. S.S. Shinde, P.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films. J. Phys. D Appl. Phys. (2008). https://doi.org/10.1088/0022-3727/41/10/105109

    Article  Google Scholar 

  23. S.S. Shinde, P.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Zinc oxide mediated heterogeneous photocatalytic degradation of organic species under solar radiation. J. Photochem. Photobiol. B. 104(3), 425–433 (2011). https://doi.org/10.1016/j.jphotobiol.2011.04.010

    Article  CAS  PubMed  Google Scholar 

  24. S.S. Shinde, K.Y. Rajpure, Fast response ultraviolet Ga-doped ZnO based photoconductive detector. Mater. Res. Bull. 46(10), 1734–1737 (2011). https://doi.org/10.1016/j.materresbull.2011.05.032

    Article  CAS  Google Scholar 

  25. M.A. Khan, P. Kumar, G. Siddharth, M. Das, S. Mukherjee, Analysis of drain current in polycrystalline MgZnO/ZnO and MgZnO/CdZnO HFET. IEEE Trans. Electron Devices 66(12), 5097–5102 (2019). https://doi.org/10.1109/TED.2019.2947422

    Article  ADS  CAS  Google Scholar 

  26. K. Alfaramawi, Electric field dependence of the electron mobility in bulk wurtzite ZnO. Bull. Mater. Sci. 37, 1603–1606 (2014). https://doi.org/10.1007/s12034-014-0720-z

    Article  CAS  Google Scholar 

  27. S.M. Sze, Semiconductor Devices Physics and Technology (Wiley India, 2011), p.246

    Google Scholar 

  28. N. DasGupta, A. DasGupta, An analytical expression for sheet carrier concentration vs gate voltage for HEMT modelling. Solid-State Electron. 36(2), 201–203 (1993). https://doi.org/10.1016/0038-1101(93)90140-L

    Article  ADS  MathSciNet  Google Scholar 

  29. J.S. Shi, H.F. Huang, X.Y. Liu, S.X. Zhao, L.Q. Zhang, P.F. Wang, Effect of device geometry on static and dynamic performance of AlGaN/GaN-on-Si high electron mobility transistor. Mater. Res. Express 3(8), 085013 (2016). https://doi.org/10.1088/2053-1591/3/8/085013

    Article  ADS  CAS  Google Scholar 

  30. D. Liu, Velocity-field characteristics of MgxZn1−xO/ZnO heterostructures. J. Comput. Electron. 22, 603–611 (2023). https://doi.org/10.1007/s10825-022-01999-2

    Article  CAS  Google Scholar 

  31. H. Tampo, H. Shibata, K. Maejima, A. Yamada, K. Matsubara, P. Fons, S. Kashiwaya, S. Niki, Y. Chiba, T. Wakamatsu, H. Kanie, Polarization-induced two-dimensional electron gases in ZnMgO/ZnO heterostructures. Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.3028338

    Article  Google Scholar 

  32. S. Chaudhary, P. Kumar, M.A. Khan, A. Kumar, S. Mukherjee, Impact of MgO spacer layer on microwave performance of MgZnO/ZnO HEMT. Eng. Res. Express (2022). https://doi.org/10.1088/2631-8695/ac6280

    Article  Google Scholar 

  33. Y.H. Zan, S.L. Ban, Electronic mobility limited by optical phonons in symmetric MgxZn1-xO/ZnO quantum wells with mixed phases. Superlattices Microstruct. 150, 106782 (2021). https://doi.org/10.1016/j.spmi.2020.106782

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutanu Dutta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Pal, R.R. & Dutta, S. A theoretical approach to study the thermal impact of the DC and RF characteristics of a MgZnO/ZnO HEMT. J. Korean Phys. Soc. 84, 313–322 (2024). https://doi.org/10.1007/s40042-023-00985-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00985-6

Keywords

Navigation