Skip to main content
Log in

A feasibility study on distinguishing fluor concentrations in liquid scintillators from scintillation events observed by photomultiplier tubes using convolutional neural networks

  • Original Paper - Particles and Nuclei
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Linear alkyl benzene-based liquid scintillators (LSs) have been extensively used as targets for neutrino detectors in recent decades owing to their environmentally friendly properties, high light yield, and cost efficiency. Neutrino events are typically reconstructed from scintillation events observed by photomultiplier tubes (PMTs) attached to the detector. A comprehensive understanding of the LS response is required for interpreting reconstructed neutrino events during detector operation. In this study, we investigate the properties of scintillation events such as light yield, waveform, and wavelength shift of the emitted scintillation light at various concentrations of fluor dissolved in the LS. The light yield, waveform, and wavelength shift exhibit a nonlinear relationship with fluor concentration, complicating the determination of fluor concentration from the observed characteristics of the scintillation events. We employ a convolutional neural network (CNN) to model this nonlinear relationship between fluor concentration and LS properties. The CNN learns the distinctive features of the scintillation events from observed waveforms and the relative ratio of the light yield below 425 nm to the total light yield detected by a PMT at different fluor concentrations. The trained CNN was able to distinguish the scintillation events with different 2,5-diphenyloxazole and 1,4-bis(2-methylstyryl)benzene concentrations according to the observed waveform and relative wavelength shift. The classified scintillation events for each LS sample exhibited clear features for the different LS concentrations, emphasizing the discriminative capability of the trained CNN. This research presents the first demonstration of LS fluor concentration discrimination using machine-learning techniques in PMT-based detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V. Albanese et al., J. Instrum.Instrum. 16, P08059 (2021)

    Article  Google Scholar 

  2. J. Alonso et al., Phys. Rev. D 105, 052009 (2022)

    Article  ADS  Google Scholar 

  3. F. An et al., J. Phys. G 43, 030401 (2016)

    Article  ADS  Google Scholar 

  4. S. Fukuda et al., Nucl. Instrum. Methods Phys. Res. A 501, 418 (2003)

    Article  ADS  Google Scholar 

  5. N.-R. Kim et al., Sensors 23, 2728 (2023)

    Article  ADS  Google Scholar 

  6. Y. Zhang et al., Nucl. Instrum. Methods Phys. Res. A 967, 163860 (2020)

    Article  Google Scholar 

  7. A. Abusleme et al., Nucl. Instrum. Methods Phys. Res. A 988, 164823 (2021)

    Article  Google Scholar 

  8. W. Beriguete et al., Nucl. Instrum. Methods Phys. Res. A 763, 82 (2014)

    Article  ADS  Google Scholar 

  9. C. Buck et al., J. Instrum.Instrum. 14, P01027 (2019)

    Article  Google Scholar 

  10. J.S. Park et al., Nucl. Instrum. Methods Phys. Res. A 707, 45 (2013)

    Article  ADS  Google Scholar 

  11. Y.S. Park et al., Rev. Sci. Instrum. 89, 043302 (2018).

  12. B.R. Kim et al., J. Radioanal. Nucl. Chem.Radioanal. Nucl. Chem. 310, 311 (2016)

    Article  Google Scholar 

  13. C. Buck et al., J. Phys. G 43, 093001 (2016)

    Article  ADS  Google Scholar 

  14. F.P. An et al., Phys. Rev. D 95, 072006 (2017)

    Article  ADS  Google Scholar 

  15. S. Seo et al., Phys. Rev. D 98, 012002 (2018)

    Article  ADS  Google Scholar 

  16. D. Adey et al., Phys. Rev. Lett. 121, 241805 (2018)

    Article  ADS  Google Scholar 

  17. F. An et al., Phys. Rev. Lett. 130, 161802 (2023)

    Article  ADS  Google Scholar 

  18. H.-t. Chen et al., (2014). arXiv:1409.1298

  19. J. Kim, et al., Separation of the 235U and 239Pu Prompt Energy Spectra in NEOS-II, in J. Phys. Conf. Ser. (IOP Publishing2021), p. 012139

  20. M. Apollonio et al., Phys. Lett. B 466, 415 (1999)

    Article  ADS  Google Scholar 

  21. Q. Liu et al., J. Instrum.Instrum. 13, T09005 (2018)

    Article  ADS  Google Scholar 

  22. Z.-Y. Li et al., Nucl. Sci. Tech.. Sci. Tech. 32, 49 (2021)

    Article  Google Scholar 

  23. M. Agostini et al., Nature 587, 577 (2020)

    Article  Google Scholar 

  24. J. Choi et al., Nucl. Instrum. Methods Phys. Res. A 810, 100 (2016)

    Article  ADS  Google Scholar 

  25. J. Park et al., Prog. Theor. Exp. Phys. 2021, 063C01 (2021)

    Article  Google Scholar 

  26. M. Anderson et al., J. Instrum.Instrum. 16, P05009 (2021)

    Article  Google Scholar 

  27. D.R. Onken et al., Mater. Adv. 1, 71 (2020)

    Article  Google Scholar 

  28. High Performance OD 4 Shortpass Filters, (2022) https://www.edmundoptics.co.kr/f/high-performance-od-4-shortpass-filters/13534/

  29. Photomultiplier tubes and assemblies, (2009) http://www-eng.lbl.gov/~shuman/NEXT/MATERIALS&COMPONENTS/High_energy_PMT_TPMO0007E02.pdf

  30. H.-G. Lee et al., Prog. Theor. Exp. Phys. 2023, 053C01 (2023)

    Article  Google Scholar 

  31. H.-H. Xu et al., Nucl. Sci. Tech.. Sci. Tech. 28, 121 (2017)

    Article  Google Scholar 

  32. S. Kiranyaz et al., Mech. Syst. Signal Process. 151, 107398 (2021)

    Article  Google Scholar 

  33. D.-A. Clevert et al., (2015). arXiv:1511.07289

  34. A. Paszke et al., (2019). arXiv:1912.01703

  35. D.P. Kingma et al., (2014). arXiv:1412.6980

Download references

Acknowledgements

This study was supported by grants awarded by the National Research Foundation (NRF) of the Korean Government (2022R1A2C1006069, 2022R1A5A1030700, and 2022R1I1A1A01064311).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyung-Kwang Joo or Hyun-Gi Lee.

Ethics declarations

Conflict of interest

None of the authors has any potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, NR., Joo, KK. & Lee, HG. A feasibility study on distinguishing fluor concentrations in liquid scintillators from scintillation events observed by photomultiplier tubes using convolutional neural networks. J. Korean Phys. Soc. 84, 1–10 (2024). https://doi.org/10.1007/s40042-023-00981-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00981-w

Keywords

Navigation