Skip to main content
Log in

Magnetic and structural properties of AlN-Co-Fe thin films prepared by two-facing-target type DC sputtering (TFTS) system

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

AlN is a wide band gap promising material for applications due to its large thermal conductivity, negative electron affinity, and for its insulating and passivating behavior. Nanocrystalline Co and Fe particles in the AlN matrix could lead to the development of a material for the above applications. In this study, we investigated anneal-induced magnetic and electric properties with respect to changes in microstructure as well as Fe content in the AlN-Co and AlN-Fe thin films. AlN-Co and AlN-Fe thin films were reactively deposited with two different combinations of targets, such as Al-Co50Fe50 (Case-I) and Al-Co20Fe80 (Case-II) targets, in a two-facing-target type dc sputtering (TFTS) system and their structural changes were investigated together with magnetic and electrical property changes. The saturation magnetization increases with increasing annealing temperature on account of the formation of magnetic phases after annealing. The films prepared with Al-Co50Fe50 target combination show a higher magnetization and a smaller coercivity than the films prepared with Al-Co20Fe80 target combination. The resistivity decreases with increasing annealing time and temperature for Case-I film but increases with annealing time and temperature for Case-II film attributed to the difference of the conducting component in the respective films. All the films show a semiconducting conduction mechanism except the annealed films prepared with Al-Co50Fe50 target combination, which shows an ohmic conduction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L.N. Kotov, V.K. Turkov, V.S. Vlasov, J. Mag. & Mag. Mater. 316, 20 (2007)

    Google Scholar 

  2. Y. Pauleau, F. Thiery, Surf. & Coat. Tech. 181, 313 (2004)

    Google Scholar 

  3. R. Schwarz, M. Fernandes, J. Martins, Sens. Actuat. A, Physical 115, 331 (2004)

    Google Scholar 

  4. S.B. Park, C.K. Park, J.T. Hwang, W.I. Cho, H. Jang, Met. Mater. Int. 17, 729 (2011)

    Google Scholar 

  5. Z. Yuan, J. Shi, B. Xu, Plasma Sci. & Tech. 10, 446 (2008)

    ADS  Google Scholar 

  6. S.Y. Yoon, J.C. Ro, D.M. Jeon, J.H. Park, J.H. Kim, S.J. Suh, J. Kor. Inst. Met. & Mater. 38, 1093 (2000)

    Google Scholar 

  7. C. Ikeyama, S. Makita, H. Iino, IEEE Trans. Magn. 39, 2249 (2003)

    ADS  Google Scholar 

  8. A.S. Adekunle, K.I. Ozoemena, Electroanalysis 23, 971 (2011)

    Google Scholar 

  9. R. Chubachi, N. Tamagawa, IEEE Trans. Magn. 20, 45 (1984)

    ADS  Google Scholar 

  10. Y. Hashimoto, IEEE Trans. Magn. 23, 3167 (1987)

    ADS  Google Scholar 

  11. H. Karamon, J. Appl. Phys. 63, 4306 (1988)

    ADS  Google Scholar 

  12. T.S. Yoon, C. Kim, T. Shoyama, Appl. Phys. Lett. 85, 82 (2004)

    ADS  Google Scholar 

  13. S. Ohnuma, S. Furukawa, H. Fujimori, J. Alloys and Compounds 222, 167 (1995)

    Google Scholar 

  14. V. Brien, P. Pigeat, J. Crystal Growth 299, 189 (2007)

    ADS  Google Scholar 

  15. V.L. Bertuzzo, N. Carvalho, V. Alberto, D.I. Santos, Matéria 28, e20220180 (2023)

    Google Scholar 

  16. Y. Stulov, V. Dolmatov, A. Dubrovskiy, S. Kuznetsov, Coatings 13, 352 (2023)

    Google Scholar 

  17. G.M. Mónica, G.M. Iván, M.G. Marc, F.A. Alicia, Acta crystallographica. Section A, Foundations and advances 75, e294 (2019)

    Google Scholar 

  18. I.A. Evdokimov, R.R. Khayrullin, S.A. Perfilov, A.A. Pozdnyakov, R.H. Bagramov, I.A. Perezhogin, A.N. Kirichenko, V.D. Blank, Mater. today: proceedings 5, 26153 (2018)

    Google Scholar 

  19. O. Pascu, S. Marre, C. Aymonier, Nanotech. Rev. 4, 2191 (2015)

    Google Scholar 

  20. D. Kamil, W. Krystyna, W. Patryk, S. Rodolphe, P. Beata, Mater. 16, 426 (2023)

    Google Scholar 

  21. C. Shao, H. Li, Y. Zhu, P. Li, H. Yu, Z. Zhang, H. Gleiter, A. McDonald, J. Hogan, Inter. J. of Extre. Manuf. 5, 015102 (2023)

    ADS  Google Scholar 

  22. O. Tursunov, K. Zubek, G. Czerski, J. Dobrowolski, J. of Therm. Analy. & Calor. 139, 3481 (2020)

    Google Scholar 

  23. C. Price, E. Earles, L. Pastor-Pérez, J. Liu, T. Reina, Inter. J. Chem. 1, 3 (2019)

    Google Scholar 

  24. B. Andrea, T. Merete and R. Eli (2019). Metall. Mater. Trans. B, Process Metall. Mater. Process. Sci. 50: 2667

  25. M. Barati and K. S. Coley (2005) Metall. Mater. Trans. B, Process metallurgy and materials processing science, 36: 169

  26. A. G. Dyachenko, O. V. Ischenko, O. V. Goncharuk, M. V. Borysenko, O. V. Mischanchuk, V. M. Gun’ko, D. Sternik and V. V. Lisnyak (2022) Appl. Nanosci. 12: 349

  27. Z. T. Zhang, H. P. Nie and K. Yan, J. of Min & Metall. an international journal for theory and practice of mining and metallurgy, Section B, Metallurgy, 57, 13 (2021).

  28. X. Meng, X. Lv, L. Shi, T. Jiang, S. Sun, Y. Li, J. Feng, A.C.S. Appl, Nano Mater. 6, 6581 (2023)

    Google Scholar 

  29. A. Rahman, P. N. Nehemia and M. M. Nyambe, Bull. of Chem. React Eng. & Cataly, 15, 617 (2020).

  30. H.K. Kim, W.S. Jung, B.J. Lee, Acta Mater. 57, 3140 (2009)

    ADS  Google Scholar 

  31. M. X. Zhang, Q. D. Hu, B. Huang, J. Z. Li and J. G. Li, Inter. J. of Refrac. Metals & Hard Mater. 29, 596 (2011).

  32. T. Saito, Y. Kamagata, W.Q. Wang, IEEE Trans. on Mag. 41, 3787 (2005)

    ADS  Google Scholar 

  33. K. Liu, Y. Li, J. Wang, Q. Ma, Mater. & Design. 87, 66 (2015)

    Google Scholar 

  34. H. Yamamoto, T. Yamane, J. of Mag. Soc. Jpn. 25, 1405 (2001)

    Google Scholar 

  35. J.H. Yao, H. Yang, J. Zhang, J.Q. Wang, Y. Li, J. of Mater. Res. 23, 392 (2008)

    ADS  Google Scholar 

  36. M. Hasiak, J. Świerczek, Mater. 15, 368 (2022)

    Google Scholar 

  37. Y.E. Chaoqun, X.U. Zheng, J. of Mater. Sci. & Eng. 23, 898 (2005)

    Google Scholar 

  38. Y.X. Chen, K. Wang, G.B. Shan, A.V. Ceguerra, L.K. Huang, H. Dong, L.F. Cao, S.P. Ringer, F. Liu, Acta Mater. 158, 340 (2018)

    ADS  Google Scholar 

  39. D. Jun, S. Liang, S. Wen-Ting, Y. Biao, L. Mu, H. An, M.M. Corte-Real, J.Q. Xiao, Acta Phys. Sinica 53, 2352 (2004)

    Google Scholar 

  40. K.H. Kim, Y.H. Kim, J. Kim, S.H. Han, H.J. Kim, J. of Magn. & Magn. Mater. 215, 428 (2000)

    ADS  Google Scholar 

  41. J.W. Choi, K.M. Kang, J. Kor. Inst. Surf. Eng. 44, 255 (2011)

    Google Scholar 

  42. S.M. Yao, K. Xi, G.R. Li, X.P. Gao, J. of power sources 184, 657 (2008)

    ADS  Google Scholar 

  43. H.L. Chang, C.T. Kuo, Jpn. J. of Appl. Phys. 49, 045002 (2010)

    ADS  Google Scholar 

  44. S. Kikkawa, M. Fujiki, H. Sugiyama, S. Enomoto, M. Takahashi, Mater. Sci. Forum 308–311, 585 (1999)

    Google Scholar 

  45. C. S. Han, J. of the Korean Soc. for Heat Treat, 21: 3 (2008).

  46. S. O. Han and C. S. Han, J. of the Korean Soc. for Heat Treat, 23, 69 (2010).

  47. C. S. Han and S. O. Han, J. of the Korean Soc. for Heat Treat, 23: 331 (2010).

  48. C.H. Bae, S.O. Han, C.S. Han, Korean J. Met. Mater. 48, 268 (2010)

    Google Scholar 

  49. C. S. Han and S. O. Han, J. of the Korean Soc. for Heat Treat, 24: 16 (2011).

  50. C.S. Han, S.O. Han, Korean J. Met. Mater. 49, 256 (2011)

    Google Scholar 

  51. C.S. Oh, C.S. Han, Korean J. Met. Mater. 50, 248 (2012)

    Google Scholar 

  52. C.S. Han, Y.H. Kim, Met. Mater. Int. 20, 153 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Suk Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, CS., Jeong, HJ. & Wang, MH. Magnetic and structural properties of AlN-Co-Fe thin films prepared by two-facing-target type DC sputtering (TFTS) system. J. Korean Phys. Soc. 84, 134–144 (2024). https://doi.org/10.1007/s40042-023-00953-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00953-0

Keywords

Navigation