Skip to main content
Log in

Atomically thin PdS2: physical characteristics and electronic device applications

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This paper details the fabrication and characterization of field-effect transistors (FETs) and photodetector devices based on few-layered palladium disulfide (PdS2) films. PdS2 is an emerging member of the transition metal dichalcogenide family that has not been extensively studied. In this study, we evaluated various characteristics of PdS2 by fabricating FET devices and measured the contact resistance using the transmission line method to be 114 MΩ \(\bullet\) μm. We evaluated the electron transport properties of the fabricated FETs to confirm their n-type behavior and measured their capacitance–voltage (C–V) curves. The field-effect mobility of the few-layered PdS2 FETs fabricated through transmission line patterning was investigated at room temperature (300 K) and found to be 2.85 cm2 V−1 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. O. Ben-Yehuda, R. Shuker, Y. Gelbstein, Highly textured Bi2Te3 -based materials for thermoelectric energy conversion. J. Appl. Phys. 101, 113707 (2007)

    Article  ADS  Google Scholar 

  2. G. Jegffrey Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  ADS  Google Scholar 

  3. J. Liang, L. Cheng, J. Zhang, H. Liu, Z. Zhang, Maximizing the thermoelectric performance of topological insulator Bi2Te3 films in the few-quintuple layer regime. Nanoscale 8, 8855–8862 (2016)

    Article  ADS  Google Scholar 

  4. L. Liu, Y.P. Feng, Z.X. Shen, Structural and electronic properties of h-BN. Phys. Rev. B. 68, 104102 (2003)

    Article  ADS  Google Scholar 

  5. C. Zhi, Y. Bando, C. Tang, H. Kuwahara, D. Golberg, Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 21, 2889–2893 (2009)

    Article  Google Scholar 

  6. S. Mouri, Y. Miyauchi, K. Matsuda, Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano. Lett. 13, 5944–5948 (2013)

    Article  ADS  Google Scholar 

  7. H.R. Gutierrez, N. Perea-Lopez, A.L. Elias, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urias, V.H. Crespi, H. Terrones, M. Terrones, Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano. Lett. 13, 3447–3454 (2013)

    Article  ADS  Google Scholar 

  8. A.J. Watson, Lu. Wenbo, M.H.D. Guimaraes, M. Stöhr, Transfer of large-scale two dimensional semiconductors: challenges and developments. 2D Mater. 8, 032001 (2021)

    Article  Google Scholar 

  9. K.F. Mak, K.L. McGill, J. Park, P.L. McEuen, The valley Hall effect in MoS2 transistors. Sci 344, 1489–1492 (2014)

    Article  ADS  Google Scholar 

  10. Y.J. Kim, S.Y. Lee, J.G. Song, K.Y. Ko, W.J. Woo, S.W. Lee, M.W. Park, H.K. Lee, Z.H. Lee, H.Y. Choi, W.H. Kim, J.S. Park, H.J. Kim, 2D transition metal dichalcogenide heterostructures for p- and n-type photovoltaic self-powered gas sensor. Adv. Funct. Mater. 30, 2003360 (2020)

    Article  Google Scholar 

  11. D.H. Kang, M.-S. Kim, J. Shim, J. Jeon, H.-Y. Park, W.-S. Jung, H.-Y. Yu, C.-H. Pang, S. Lee, J.-H. Park, High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 25, 4219–4227 (2015)

    Article  Google Scholar 

  12. J. Yao, Z. Zheng, G. Yang, Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550nm. J. Mater. Chem. C 4, 7831 (2016)

    Article  Google Scholar 

  13. Wu. Enping, Wu. Di, C. Jia, Y. Wang, H. Yuan, L. Zeng, Xu. Tingting, Z. Shi, Y. Tian, X. Li, In Situ Fabrication of 2D WS2/Si Type-II heterojunction for self powered broadband photodetector with response up to midinfrared. ACS Photon. 6, 565–572 (2019)

    Article  Google Scholar 

  14. Z. Huang, Z. Huang, C. He, X. Qi, H. Yang, W. Liu, X. Wei, X. Peng, J. Zhong, Band structure engineering of monolayer MoS2 on h-BN: first-principles calculations. J. Phys. D. 47, 075301 (2014)

    Article  ADS  Google Scholar 

  15. Y. Wang, C. Cong, W. Yang, J. Shang, Yu. Namphung Peimyoo, J.K. Chen, J. Wang, W. Huang, Yu. Ting, Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2. Nano. Res. 8, 2562–2572 (2015)

    Article  Google Scholar 

  16. D.F. Cordovilla Leon, Z. Li, S.W. Jang, C.-H. Cheng, P.B. Deotare, Exciton transport in strained monolayer WSe2. Appl. Phys. Lett. 113, 252101 (2018)

    Article  ADS  Google Scholar 

  17. C. Ruppert, B. Aslan, T.F. Heinz, Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano. Lett. 14(11), 6231–6236 (2014)

    Article  ADS  Google Scholar 

  18. S. Yang, Wu. Minghui, B. Wang, L.-D. Zhao, Li. Huang, C. Jiang, S.-H. Wei, Enhanced electrical and optoelectronic characteristics of few-layer type-II SnSe/MoS2 van der Waals heterojunctions. ACS Appl. Mater. Interfaces 9, 42149–42155 (2017)

    Article  Google Scholar 

  19. Dh.J.G.H. Oh, S.-i Kim, T.W. Kim, Top-gate field-effect transistor based on monolayer WS2 with an ion-gel gate dielectric. Jpn. J. Appl. Phys. 61, 034001 (2022)

    Article  ADS  Google Scholar 

  20. H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, F.M. Peeters, Anomalous raman spectra and thickness-dependent electronic properties of WSe2. Phys. Rev. B 87, 165409 (2013)

    Article  ADS  Google Scholar 

  21. X. Qian, J. Liu, Fu. Liang, Ju. Li, Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Sci 346, 1344–1347 (2014)

    Article  ADS  Google Scholar 

  22. J. Li, Gu. Lei, Wu. Ruqian, Possible realization and protection of valley-polarized quantum Hall effect in Mn/WS2. Phys. Rev. B 101, 024412 (2020)

    Article  ADS  Google Scholar 

  23. S. Deng, S. Deng, L. Li, Y. Zhang, Strain modulated electronic, mechanical, and optical properties of the monolayer PdS2, PdSe2, and PtSe2 for tunable devices. ACS appl. Nano Mater. 1, 1932–1939 (2018)

    Article  Google Scholar 

  24. R.O. Figueiredo, L. Seixas, Hydrogen-evolution reaction in two-dimensional PdS2 by phase and defect engineering. Phys. Rev. Appl. 17, 034035 (2022)

    Article  ADS  Google Scholar 

  25. M. Ghorbani-Asl, A. Kuc, P. Miró, T. Heine, A single-material logical junction based on 2D crystal PdS2. Adv. Mater. 28, 853–856 (2016)

    Article  Google Scholar 

  26. P. Miro, M. Ghorbani-Asl, T. Heine, Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides. Angew. Chem. Int. Ed. 53, 3015–3018 (2014)

    Article  Google Scholar 

  27. Y. Wang, Y. Li, Z. Chen, High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. J. Mater. Chem. C 3, 9603 (2015)

    Article  Google Scholar 

  28. D. Saraf, S. Chakraborty, A. Kshirsagar, R. Ahuja, In pursuit of bifunctional catalytic activity in PdS2 pseudo-monolayer through reaction coordinate mapping. Nano. Energy 49, 283–289 (2018)

    Article  Google Scholar 

  29. X. Zhang, Su. Guowen, Lu. Jiangwei, W. Yang, W. Zhuang, K. Han, X. Wang, Y. Wan, Yu. Xiaohua, P. Yang, Centimeter-scale few-layer PdS2: fabrication and physical properties. ACS Appl. Mater. Interfaces 13, 43063–43074 (2021)

    Article  Google Scholar 

  30. K. He, Xu. Weiting, J. Tang, L. Yuan, C. Yi, B. Li, H. Zhu, H. Zhang, X. Lin, Y. Feng, M. Zhu, J. Shen, M. Zhong, B. Li, X. Duan, Centimeter-scale PdS2 ultrathin films with high mobility and broadband photoresponse. Small (2023). https://doi.org/10.1002/smll.202206915

    Article  Google Scholar 

  31. J.O. Island, S.I. Blanter, M. Buscema, H.S.J. van der Zant, A. Castellanos-Gomez, Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett. 15(12), 7853–7858 (2015)

    Article  ADS  Google Scholar 

  32. Z. Qi, X. Liao, J. Zheng, C.-a Di, X. Gao, J. Wang, High-performance n-type organic thin-film phototransistors based on a core-expanded naphthalene diimide. Appl. Phys. Lett 103, 053301 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF-2021R1C1C1006147) and Samsung Electronics University R&D program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang-il Kim or Tae wan Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, H.S., Oh, G.H., Kim, Si. et al. Atomically thin PdS2: physical characteristics and electronic device applications. J. Korean Phys. Soc. 83, 751–755 (2023). https://doi.org/10.1007/s40042-023-00908-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00908-5

Keywords

Navigation