Skip to main content
Log in

Composition-dependent trapezoidal quantum barrier effect on efficiency droop in GaN-based light-emitting diodes

  • Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We systematically investigated GaN-based light-emitting diodes (LEDs) with composition-dependent trapezoidal quantum barriers (QBs) to analyze the efficiency droop behavior at low and high current densities. The simulation results show that the electrostatic field in the quantum wells (QWs) is gradually reduced by increasing the indium composition in the trapezoidal QBs. The electroluminescence (EL) intensity of an LED with trapezoidal QBs (In = 8%) at 300 mA was increased by 12.2% compared to the reference LED with square-type QBs. The internal quantum efficiency (IQE) droop of the LED with trapezoidal QBs (In = 10%) is 6% at 300 A·cm−2, while the reference LED with square-type GaN barriers has 5 times higher IQE droop (31%). The increased EL intensity and reduced IQE droop in the LED with trapezoidal QBs are attributed to the reduced energy band bending, the decreased Auger nonradiative recombination, and the efficient electron blocking in multiple QWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.F. Schubert, J.K. Kim, Solid-state light sources getting smart. Science 308, 1–25 (2005)

    Article  Google Scholar 

  2. F.A. Ponce, D.P. Bour, Nitride-based semiconductors for blue and green light-emitting devices. Nature 386, 351–359 (1997)

    Article  ADS  Google Scholar 

  3. J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010)

    Article  ADS  Google Scholar 

  4. Y. Weng, G. Chen, J. Nie, S. Que, S.H. Song, Y. Yu, F. Zhang, H. Liu, X. Zhou, Y. Zhang, J. Sun, J.K. Song, C. Wu, T. Guo, Q. Yan, Hybrid device of blue GaN light-emitting diodes and organic light-emitting diodes with color tunability for smart lighting sources. ACS Omega 7(6), 5502 (2022)

    Article  Google Scholar 

  5. M. Usman, M. Munsif, A.R. Anwar, H. Jamal, S. Malik, N.U. Islam, High internal quantum efficiency of green GaN-based light-emitting diodes by thickness-graded last well/last barrier and composition-graded electron blocking layer. Superlattices Microstruct. 139, 10647 (2020)

    Google Scholar 

  6. Y.L. Li, Y.R. Huang, Y.H. Lai, Rate equation analysis of efficiency droop in InGaN light-emitting diodes. Appl. Phys. Lett. 91, 181113 (2007)

    Article  ADS  Google Scholar 

  7. W. Liu, C. Haller, T. Weatherley, J.F. Carlin, G. Jacopin, R. Butte, N. Grandjean, Impact of defects on Auger recombination in c-plane InGaN/GaN single quantum well in the efficiency droop regime. Appl. Phys. Lett. 116, 222106 (2020)

    Article  ADS  Google Scholar 

  8. J. Wang, L. Wang, W. Zhao, Z. Hao, Y. Luo, Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization. Appl. Phys. Lett. 97, 201112 (2010)

    Article  ADS  Google Scholar 

  9. Y. Hou, Z. Guo, Enhancement of hole injection in deep ultraviolet light-emitting diodes using a serrated p-type layer. Opt. Commun. 433, 236–241 (2019)

    Article  ADS  Google Scholar 

  10. M.F. Schubert, J. Xu, J.K. Kim, E.F. Schubert, M.H. Kim, S. Yoon, S.M. Lee, C. Sone, T. Sakong, Y. Park, Polarization-matched GaInN∕AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop. Appl. Phys. Lett. 93, 041102 (2008)

    Article  ADS  Google Scholar 

  11. X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, A. Matulionis, T. Paskova, G. Mulholland, K.R. Evans, Actively tuned and spatially trapped polaritons. Appl. Phys. Lett. 97, 031110 (2010)

    Article  ADS  Google Scholar 

  12. N.F. Gardner, G.O. Muller, Y.C. Shen, G. Chen, S. Watanabe, W. Gotz, M.R. Krames, Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2. Appl. Phys. Lett. 91, 243506 (2007)

    Article  ADS  Google Scholar 

  13. S.H. Han, D.Y. Lee, H.W. Shim, G.C. Kim, Y.S. Kim, S.T. Kim, S.J. Lee, C.Y. Cho, S.J. Park, Improvement of efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes with trapezoidal wells. J. Phys. D: Appl. Phys. 43, 354004 (2010)

    Article  Google Scholar 

  14. S.J. Kim, K.J. Lee, S.J. Park, Alleviation of efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes with trapezoidal quantum barriers. J. Phys. D: Appl. Phys. 51, 25LT01 (2018)

    Article  Google Scholar 

  15. H.Y. Ryu, G.H. Ryu, Small signal analysis of the modulation bandwidth of light-emitting diodes for visible light communication. Opt. Laser Technol. 152, 108170 (2022)

    Article  Google Scholar 

  16. M.I.M. Taib, M.A. Ahmad, E.A. Alias, A.I. Alhassan, I.A. Ajia, M.M. Muhammed, I.S. Roqan, S.P. DenBaars, J.S. Speck, S. Nakamura, Growth modification via indium surfactant for InGaN/GaN green LED. Semicond. Sci. Technol. 38, 035025 (2023)

    Article  ADS  Google Scholar 

  17. G.B. Lin, D.Y. Kim, Q. Shan, J. Cho, E.F. Schubert, H. Shim, C. Sone, J.K. Kim, Effect of quantum barrier thickness in the multiple-quantum-well active region of GaInN/GaN light-emitting diodes. IEEE Photon. J. 5, 1600207 (2013)

    Article  ADS  Google Scholar 

  18. Y. Zhang, I.P. Smorchkova, C.R. Elsass, S. Keller, J.P. Ibbeston, S. Denbaars, U.K. Mishra, J. Singh, Charge control and mobility in AlGaN/GaN transistors: experimental and theoretical studies. J. Appl. Phys. 87, 7881–7897 (2000)

    Article  Google Scholar 

  19. H.Y. Ryu, K.S. Jeon, M.G. Kang, H.K. Yuh, Y.H. Choi, J.S. Lee, A comparative study of efficiency droop and internal electric field for InGaN blue lighting-emitting diodes on silicon and sapphire substrates. Sci. Rep. 7, 44814 (2017)

    Article  ADS  Google Scholar 

  20. H.Y. Ryu, G.H. Ryu, C. Onwukaeme, Efficiency droop and effective active volume in GaN-based light-emitting diodes grown on sapphire and silicon substrates. Appl. Sci. 9(19), 4160 (2019)

    Article  Google Scholar 

  21. Y. Wu, Y. Xiao, I. Navid, K. Sun, Y. Malhotra, P. Wang, D. Wang, Y. Xu, A. Pandey, M. Reddeppa, W. Shin, J. Liu, J. Min, Z. Mi, InGaN micro-light-emitting diodes monolithically grown on Si: achieving ultra-stable operation through polarization and strain engineering. Light Sci Appl. 11, 294 (2022)

    Article  ADS  Google Scholar 

  22. W.C. Miao, Y.H. Hong, F.H. Hsiao, J.D. Chen, H. Chiang, C.L. Lin, C.C. Lin, S.C. Chen, H.C. Kuo, Modified distributed Bragg reflectors for color stability in InGaN red micro-LEDs. Nanomaterials 13(4), 661 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanghoon Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.R., Oh, S., Jung, S. et al. Composition-dependent trapezoidal quantum barrier effect on efficiency droop in GaN-based light-emitting diodes. J. Korean Phys. Soc. 83, 581–587 (2023). https://doi.org/10.1007/s40042-023-00898-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00898-4

Keywords

Navigation