Skip to main content
Log in

Exploration of chemical reaction routes to the synthesis of possible transparent p-type conductor Sn2GeO4

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Transparent conducting oxides (TCOs) with p-type conductivity are highly sought after, but the development of high-performance p-type TCOs remains a challenge. Recently, Sn2GeO4 has been theoretically suggested as a promising p-type TCO, but experimental reports on this material are still lacking. Here, we explore three possible synthesis routes with different starting materials and reaction temperatures, including the theoretically suggested one, but none of them contain trace amount of the Sn2GeO4 phase as confirmed by X-ray diffractometry. The Gibbs free energy of formation suggests that some of the reactions are energetically favorable and spontaneous, but the formation of more stable byproducts is likely to hinder the desired chemical reaction. Interestingly, we report the formation of a previously unseen SnGeO3 phase as one of the byproducts from the chemical reaction. This work provides experimental database with systematic analysis of temperature-dependent phase evolution to understand the Sn–Ge–O system, thus serving as a reference study for future research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.T. Chavan, Y. Kim, M.Q. Khokhar, S.Q. Hussain, E.-C. Cho, J. Yi, Z. Ahmad, P. Rosaiah, C.-W. Jeon, Nanomaterials 13, 1226 (2023). https://doi.org/10.3390/nano13071226

    Article  Google Scholar 

  2. C. Habis, J. Zaraket, M. Aillerie, Defect Diffus. Forum 417, 243–256 (2022). https://doi.org/10.4028/p-97c472

    Article  Google Scholar 

  3. L. Hu, R.H. Wei, X.W. Tang, W.J. Lu, X.B. Zhu, Y.P. Sun, J. Appl. Phys. 128, 140902 (2020). https://doi.org/10.1063/5.0023656

    Article  ADS  Google Scholar 

  4. Z. Bai, S.-C. Chen, S.-S. Lin, Q. Shi, Y.-B. Lu, S.-M. Song, H. Sun, Surf. Interfaces 22, 100824 (2021). https://doi.org/10.1016/j.surfin.2020.100824

    Article  Google Scholar 

  5. M. Zhong, W. Zeng, F.-S. Liu, D.-H. Fan, B. Tang, Q.-J. Liu, Mater. Today Phys. 22, 100583 (2022). https://doi.org/10.1016/j.mtphys.2021.100583

    Article  Google Scholar 

  6. M. Moreira, J. Afonso, J. Crepelliere, D. Lenoble, P. Lunca-Popa, J. Mater. Sci. 57, 3114–3142 (2022). https://doi.org/10.1007/s10853-021-06815-z

    Article  ADS  Google Scholar 

  7. C.K.G. Kwok, Y. Wang, K. Egbo, M.K. Hossain, S.K. Shil, K.M. Yu, Surf. Interfaces 35, 102473 (2022). https://doi.org/10.1016/j.surfin.2022.102473

    Article  Google Scholar 

  8. C.K.G. Kwok, Y. Wang, K. Egbo, K.M. Yu, J. Phys. Chem. C 126, 18963–18971 (2022). https://doi.org/10.1021/acs.jpcc.2c06397

    Article  Google Scholar 

  9. J. Jia, T. Sugane, S.-I. Nakamura, Y. Shigesato, J. Appl. Phys. 127, 185703 (2020). https://doi.org/10.1063/5.0005953

    Article  ADS  Google Scholar 

  10. C. Guillén, J. Herrero, J. Mater. Sci. Technol. 35, 1706–1711 (2019). https://doi.org/10.1016/j.jmst.2019.03.034

    Article  Google Scholar 

  11. T. Yin, J. Lee, E. Moosavi-Khoonsari, I.-H. Jung, Ceram. Int. 47, 29267–29276 (2021). https://doi.org/10.1016/j.ceramint.2021.07.091

    Article  Google Scholar 

  12. J. Yu, J. Wang, M. Kumar, N. Umezawa, H. Abe, J. Mater. Chem. C 6, 11202–11208 (2018). https://doi.org/10.1039/C8TC04024A

    Article  Google Scholar 

  13. Y. Pauleau, J.-C. Remy, J. Less Common Met. 42, 199–208 (1975). https://doi.org/10.1016/0022-5088(75)90005-3

    Article  Google Scholar 

  14. J. Wu, J.L. Coffer, Y. Wang, R. Schulze, J. Phys. Chem. C 113, 12–16 (2009). https://doi.org/10.1021/jp8080996

    Article  Google Scholar 

  15. Y. Hu, X. Yao, D.G. Schlom, S. Datta, K. Cho, Chem. Mater. 33, 212–225 (2021). https://doi.org/10.1021/acs.chemmater.0c03495

    Article  Google Scholar 

  16. M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47–154 (2005). https://doi.org/10.1016/j.progsurf.2005.09.002

    Article  ADS  Google Scholar 

  17. T. Jantzen, K. Hack, E. Yazhenskikh, M. Müller, Chim. Techno Acta 5, 166–188 (2018). https://doi.org/10.15826/chimtech.2018.5.4.02

    Article  Google Scholar 

  18. J.-H. Dominika, H. Piotr, J. Min. Metallur. Sect. B Metallur. 58, 491–500 (2022). https://doi.org/10.2298/JMMB220614030J

    Article  Google Scholar 

  19. X.Y. Liu, High Pressure Synthesis and Preparation of Inorganic Materials, in Modern Inorganic Synthetic Chemistry, 2nd edn., ed. by R. Xu, Y. Xu (Elsevier, Amsterdam, 2017), pp.105–141

    Chapter  Google Scholar 

  20. K.J. Kingma, R.J. Hemley, H.-K. Mao, D.R. Veblen, Phys. Rev. Lett. 70, 3927–3930 (1993). https://doi.org/10.1103/PhysRevLett.70.3927

    Article  ADS  Google Scholar 

  21. Q. Sun, X. Zhao, Y. Feng, Y. Wu, Z. Zhang, X. Zhang, X. Wang, S. Feng, X. Liu, Inorg. Chem. Front. 5, 669–674 (2018). https://doi.org/10.1039/C7QI00775B

    Article  Google Scholar 

  22. M.-H. Zhao, C. Zhu, Z. Sun, T. Xia, Y. Han, Y. Zeng, Z. Gao, Y. Gong, X. Wang, J. Hong, W.-X. Zhang, Y. Wang, D.-X. Yao, M.-R. Li, Chem. Mater. 34, 186–196 (2022). https://doi.org/10.1021/acs.chemmater.1c03073

    Article  Google Scholar 

  23. C.X. Lv, X.K. Gai, R.Q. Yang, J.Z. Wang, H.Z. Jiang, Adv. Mater. Res. 953–954, 1082–1086 (2014). https://doi.org/10.4028/www.scientific.net/AMR.953-954.1082

    Article  Google Scholar 

  24. J. Silver, E.A.D. White, J.D. Donaldson, J. Mater. Sci. 12, 827–829 (1977). https://doi.org/10.1007/BF00548178

    Article  ADS  Google Scholar 

  25. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1, 11002 (2013). https://doi.org/10.1063/1.4812323

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Research Grant of Pukyong National University (2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seunghun Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 399 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, J.H., Kim, H., Kang, M. et al. Exploration of chemical reaction routes to the synthesis of possible transparent p-type conductor Sn2GeO4. J. Korean Phys. Soc. 83, 283–288 (2023). https://doi.org/10.1007/s40042-023-00883-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00883-x

Keywords

Navigation