Skip to main content
Log in

Branching annihilating random walk with long-range repulsion: logarithmic scaling, reentrant phase transitions, and crossover behaviors

  • Original Paper - General, Mathematical and Statistical Physics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We study absorbing phase transitions in the one-dimensional branching annihilating random walk with long-range repulsion. The repulsion is implemented as hopping bias in such a way that a particle is more likely to hop away from its closest particle. The bias strength due to long-range interaction has the form \(\varepsilon x^{-\sigma },\) where x is the distance from a particle to its closest particle, \(0\le \sigma \le 1,\) and the sign of \(\varepsilon \) determines whether the interaction is repulsive (positive \(\varepsilon )\) or attractive (negative \(\varepsilon )\). A state without particles is the absorbing state. We find a threshold \(\varepsilon _s,\) such that the absorbing state is dynamically stable for small branching rate q if \(\varepsilon < \varepsilon _s.\) The threshold differs significantly, depending on parity of the number \(\ell \) of offspring. When \(\varepsilon >\varepsilon _s,\) the system with odd \(\ell \) can exhibit reentrant phase transitions from the active phase with nonzero steady-state density to the absorbing phase, and back to the active phase. On the other hand, the system with even \(\ell \) is in the active phase for nonzero q if \(\varepsilon >\varepsilon _s.\) Still, there are reentrant phase transitions for \(\ell =2.\) Unlike the case of odd \(\ell ,\) however, the reentrant phase transitions can occur only for \(\sigma =1\) and \(0<\varepsilon < \varepsilon _s.\) We also study the crossover behavior for \(\ell = 2\) when the interaction is attractive (negative \(\varepsilon )\), to find the crossover exponent \(\phi =1.123(13)\) for \(\sigma =0.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Bramson, L. Gray, Z. Wahrsch. Verw. Gebiete 68, 447 (1985)

    Article  MathSciNet  Google Scholar 

  2. A. Sudbury, Ann. Probab. 18, 581 (1990)

    Article  MathSciNet  Google Scholar 

  3. H. Takayasu, A.Y. Tretyakov, Phys. Rev. Lett. 68, 3060 (1992)

    Article  ADS  Google Scholar 

  4. I. Jensen, Phys. Rev. E 47, R1 (1993)

    Article  ADS  Google Scholar 

  5. I. Jensen, J. Phys. A: Math. Gen. 26, 3921 (1993)

    Article  ADS  Google Scholar 

  6. I. Jensen, Phys. Rev. E 50, 3623 (1994)

    Article  ADS  Google Scholar 

  7. H.-K. Janssen, Z. Phys. B 42, 151 (1981)

    Article  ADS  Google Scholar 

  8. P. Grassberger, Z. Phys. B 47, 365 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  9. N. Menyhárd, J. Phys. A 27, 6139 (1994)

    Article  ADS  Google Scholar 

  10. W.M. Hwang, S. Kwon, H. Park, H. Park, Phys. Rev. E 57, 6438 (1998)

    Article  ADS  Google Scholar 

  11. H. Hinrichsen, Adv. Phys. 49, 815 (2000)

    Article  ADS  Google Scholar 

  12. G. Ódor, Rev. Mod. Phys. 76, 663 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Henkel, H. Hinrichsen, S. Lübeck, Non-Equilibrium Phase Transitions: Volume 1: Absorbing Phase Transitions (Springer, Berlin, 2008)

  14. P. Grassberger, F. Krause, T. von der Twer, J. Phys. A 17, L105 (1984)

    Article  Google Scholar 

  15. I. Jensen, Phys. Rev. Lett. 70, 1465 (1993)

    Article  ADS  Google Scholar 

  16. J.L. Cardy, U.C. Taüber, J. Stat. Phys. 90, 1 (1998)

    Article  ADS  Google Scholar 

  17. O. Al Hammal, H. Chaté, I. Dornic, M.A. Muñoz, Phys. Rev. Lett. 94, 230601 (2005)

    Article  ADS  Google Scholar 

  18. B. Daga, P. Ray, Phys. Rev. E 99, 032104 (2019)

    Article  ADS  Google Scholar 

  19. S.-C. Park, Phys. Rev. E 101, 052125 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  20. S.-C. Park, Phys. Rev. E 101, 052103 (2020)

    Article  ADS  Google Scholar 

  21. S.-C. Park, Phys. Rev. E 102, 042112 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. P. Sen, P. Ray, Phys. Rev. E 92, 012109 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. R. Roy, P. Sen, J. Phys. A: Math. Theor. 53, 405003 (2020)

    Article  Google Scholar 

  24. I. Jensen, J. Phys. A 32, 5233 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  25. S.-C. Park, J. Korean Phys. Soc. 62, 469 (2013)

    Article  ADS  Google Scholar 

  26. T.E. Harris, Ann. Probab. 2, 969 (1974)

    Article  Google Scholar 

  27. T.M. Liggett, Interacting Particle Systems (Springer, Berlin, 1985)

    Book  MATH  Google Scholar 

  28. S. Kwon, H. Park, Phys. Rev. E 52, 5955 (1995)

    Article  ADS  Google Scholar 

  29. S.-C. Park, Phys. Rev. E 101, 052114 (2020)

    Article  ADS  Google Scholar 

  30. S.-C. Park, H. Park, Phys. Rev. E 78, 041128 (2008)

    Article  ADS  Google Scholar 

  31. S. Kwon, W.M. Hwang, H. Park, Phys. Rev. E 59, 4949 (1999)

    Article  ADS  Google Scholar 

  32. K.E. Bassler, D.A. Browne, Phys. Rev. Lett. 77, 4094 (1996)

    Article  ADS  Google Scholar 

  33. G. Ódor, N. Menyhard, Phys. Rev. E 78, 041112 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Catholic University of Korea, research fund 2021, and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (no. 2020R1F1A1077065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Chan Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SC. Branching annihilating random walk with long-range repulsion: logarithmic scaling, reentrant phase transitions, and crossover behaviors. J. Korean Phys. Soc. 83, 151–160 (2023). https://doi.org/10.1007/s40042-023-00863-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00863-1

Keywords

Navigation