Skip to main content
Log in

Identification of octahedral configuration in strained SrRuO3 thin films

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The compressively strained (2 2 0)-oriented SrRuO3 epitaxial thin films were grown on c-plane SrTiO3 substrates using pulsed laser deposition. Temperature-dependent lattice changes associated with structural phase transition were investigated through in-situ X-ray diffractions with varying temperature ranges from 25 to 650 °C under atmospheric conditions. Strong modulation of the in-plane lattices between the strained SrRuO3 thin film and SrTiO3 substrate was observed. The structural phase transition from pseudo-orthorhombic to the tetragonal structure was determined at around 285 °C and epitaxial strain was persistent during the structural phase transition in the fully strained SrRuO3/SrTiO3 heterostructured thin film. Crystal symmetry and the corresponding RuO6 octahedral configurations were verified that the compressively strained SrRuO3 thin film has pseudo-orthorhombic (monoclinic, P21/m, #11) structure with the BO6 configuration of a+ac at 25 °C and tetragonal (I4/mcm, #140) with the octahedral tilt of a0a0c above 285 °C through structural model calculations based on the diffraction data of 20 individual half-order peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.A. Lee et al., Enhanced electrocatalytic activity via phase transitions in strongly correlated SrRuO3 thin films. Energ. Environ. Sci. 10(4), 924–930 (2017). https://doi.org/10.1039/C7EE00628D

    Article  Google Scholar 

  2. Q. Qin et al., Emergence of topological hall effect in a SrRuO3 single layer. Adv. Mater. 31(8), 1807008 (2019). https://doi.org/10.1002/adma.201807008

    Article  Google Scholar 

  3. Y.M. Kwak et al., Magnetoresistance of epitaxial SrRuO3 thin films on a flexible CoFe2O4-buffered mica substrate. Curr. Appl. Phys. 34, 71–75 (2022). https://doi.org/10.1016/j.cap.2021.12.005

    Article  ADS  Google Scholar 

  4. J.M. Rondinelli, N.A. Spaldin, Structure and properties of functional oxide thin films: insights from electronic-structure calculations. Adv. Mater. 23(30), 3363–3381 (2011). https://doi.org/10.1002/adma.201101152

    Article  Google Scholar 

  5. H.Y. Hwang et al., Emergent phenomena at oxide interfaces. Nat. Mater. 11(2), 103–113 (2012). https://doi.org/10.1038/nmat3223

    Article  MathSciNet  ADS  Google Scholar 

  6. S.G. Jeong et al., Atomic and electronic structures of correlated SrRuO3/SrTiO3 superlattices. J. Korean Phys. Soc. 82, 386–391 (2023). https://doi.org/10.1007/s40042-022-00695-5

    Article  ADS  Google Scholar 

  7. D. Kan, R. Aso, H. Kurata, Y. Shimakawa, Thickness-dependent structure-property relationships in strained (110) SrRuO3 thin films. Adv. Funct. Mater. 23(9), 1129–1136 (2013). https://doi.org/10.1002/adfm.201202402

    Article  Google Scholar 

  8. W.L. Lu et al., Control of oxygen octahedral rotations and physical properties in SrRuO3 films. Phys. Rev. B 88(21), 214115 (2013). https://doi.org/10.1103/PhysRevB.88.214115

    Article  ADS  Google Scholar 

  9. B. Dabrowski et al., Reduced ferromagnetic transition temperatures in SrRu1−vO3 perovskites from Ru-site vacancies. Phys. Rev. B 70(1), 014423 (2004). https://doi.org/10.1103/PhysRevB.70.014423

    Article  ADS  Google Scholar 

  10. M.R. James, J.M. Steven, W.F. John, Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bull. 37, 261 (2012). https://doi.org/10.1557/mrs.2012.49

    Article  Google Scholar 

  11. S.A. Lee et al., Tuning electromagnetic properties of SrRuO3 epitaxial thin films via atomic control of cation vacancies. Sci. Rep. 7(1), 11583 (2017). https://doi.org/10.1038/s41598-017-11856-z

    Article  ADS  Google Scholar 

  12. K.A. Müller, W. Berlinger, F. Waldner, Characteristic structural phase transition in perovskite-type compounds. Phys. Rev. Lett. 21(12), 814–817 (1968). https://doi.org/10.1103/PhysRevLett.21.814

    Article  ADS  Google Scholar 

  13. E. Pytte, J. Feder, Theory of a structural phase transition in perovskite-type crystals. Phys. Rev. 187(3), 1077–1088 (1969). https://doi.org/10.1103/PhysRev.187.1077

    Article  ADS  Google Scholar 

  14. S.A.T. Redfern, High-temperature structural phase transitions in perovskite. J. Phys. Condens. Matter 8(43), 8267–8275 (1996). https://doi.org/10.1088/0953-8984/8/43/019

    Article  ADS  Google Scholar 

  15. G. Shirane, Neutron scattering studies of structural phase transitions at Brookhaven. Rev. Mod. Phys. 46(3), 437–449 (1974). https://doi.org/10.1103/RevModPhys.46.437

    Article  ADS  Google Scholar 

  16. B.J. Kennedy, B.A. Hunter, High-temperature phases of SrRuO3. Phys. Rev. B 58(2), 653 (1998). https://doi.org/10.1103/PhysRevB.58.653

    Article  ADS  Google Scholar 

  17. D. Kan, Y. Shimakawa, Strain effect on structural transition in SrRuO3 epitaxial thin films. Cryst. Growth Des. 11(12), 5483–5487 (2011). https://doi.org/10.1021/cg201070n

    Article  Google Scholar 

  18. R. Aso, D. Kan, Y. Shimakawa, H. Kurata, Control of structural distortions in transition-metal oxide films through oxygen displacement at the heterointerface. Adv. Funct. Mater. 24(33), 5177–5184 (2014). https://doi.org/10.1002/adfm.201303521

    Article  Google Scholar 

  19. K.J. Choi et al., Phase-transition temperatures of strained single-crystal SrRuO3 thin films. Adv. Mater. 22(6), 759–762 (2010). https://doi.org/10.1002/adma.200902355

    Article  Google Scholar 

  20. S. Tyagi et al., Strain healing of spin–orbit coupling: a cause for enhanced magnetic moment in epitaxial SrRuO3 thin films. J. Phys. Condens. Matter 32(30), 305501 (2020). https://doi.org/10.1088/1361-648X/ab8424

    Article  Google Scholar 

  21. S.H. Chang et al., Thickness-dependent structural phase transition of strained SrRuO3 ultrathin films: the role of octahedral tilt. Phys. Rev. B 84(10), 104101 (2011). https://doi.org/10.1103/PhysRevB.84.104101

    Article  ADS  Google Scholar 

  22. F. Spaepen, Interfaces and stresses in thin films. Acta Mater. 48(1), 31–42 (2000). https://doi.org/10.1016/S1359-6454(99)00286-4

    Article  ADS  Google Scholar 

  23. A. Vailionis, W. Siemons, G. Koster, Strain-induced single-domain growth of epitaxial SrRuO3 layers on SrTiO3: a high-temperature x-ray diffraction study. Appl. Phys. Lett. 91(7), 071907 (2007). https://doi.org/10.1063/1.2771087

    Article  ADS  Google Scholar 

  24. A. Vailionis et al., Misfit strain accommodation in epitaxial ABO3 perovskites: lattice rotations and lattice modulations. Phys. Rev. B 83(6), 064101 (2011). https://doi.org/10.1103/PhysRevB.83.064101

    Article  ADS  Google Scholar 

  25. D. de Ligny, P. Richet, High-temperature heat capacity and thermal expansion of SrTiO3 and SrZrO3 perovskites. Phys. Rev. B 53(6), 3013–3022 (1996). https://doi.org/10.1103/PhysRevB.53.3013

    Article  ADS  Google Scholar 

  26. A.M. Glazer, Simple ways of determining perovskite structures. Acta Cryst. A 31, 756 (1975). https://doi.org/10.1107/S0567739475001635

    Article  Google Scholar 

  27. C.L. Jia et al., Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 79(8), 081405 (2009). https://doi.org/10.1103/PhysRevB.79.081405

    Article  ADS  Google Scholar 

  28. S.J. May et al., Quantifying octahedral rotations in strained perovskite oxide films. Phys. Rev. B 82(1), 014110 (2010). https://doi.org/10.1103/PhysRevB.82.014110

    Article  ADS  Google Scholar 

  29. M. Brahlek, A.K. Choquette, C.R. Smith, R. Engel-Herbert, S.J. May, Structural refinement of Pbnm-type perovskite films from analysis of half-order diffraction peaks. J. Appl. Phys. 121(4), 045303 (2017). https://doi.org/10.1063/1.4974362

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Pukyong National University Research Fund in 2019 (CD20191037) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020R1F1A1073076). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2022R1I1A1A01065234).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang A. Lee or Jae-Yeol Hwang.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eom, T.H., Lee, S.A. & Hwang, JY. Identification of octahedral configuration in strained SrRuO3 thin films. J. Korean Phys. Soc. 83, 65–71 (2023). https://doi.org/10.1007/s40042-023-00862-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00862-2

Keywords

Navigation