Skip to main content
Log in

Artificial neural network-based sodium nitrite NQR analysis in an urban noisy environment

  • Original Paper - Particles and Nuclei
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

An Erratum to this article was published on 02 January 2024

This article has been updated

Abstract

Using the nuclear quadrupole resonance procedure in non-shielded environments requires special measures. For this purpose, noise reduction and interference suppression algorithms have been used to increase signal-to-noise and interference ratio or SNIR. For this aim, two types of antennas are considered, the ferrite core coil antenna as the main antenna receives the free induction decay or FID signal, radio frequency interference or RFI, and noise, and the omnidirectional auxiliary antenna receives the RFI and noise as the algorithm reference noise. To perform the noise and interference cancelation, the weighting factors in auxiliary antenna data are so important, that an artificial neural network or ANN model has been used to increase the SNIR. In this research, sodium nitrite has been used as a sample, then algorithms have been tested in a non-shielded environment. The resonant frequency of the 200 g sample, by the signal-to-noise ratio improvement of 18.889 dB, the signal-to-interference ratio improvement of 24.819 dB, and the FID signal amplification of 16.925 dB, were measured at 4.649 MHz. The main technique in this study was to use an auxiliary antenna to estimate the noise and interference and compute the learned weighting factor before sending the NQR pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. M. Marshall, J.C. Oxley, Aspects of explosives detection (Elsevier, Amsterdam, 2009)

    Google Scholar 

  2. V.K. Jain, Magnetic resonance, in Solid state physics. ed. by V.K. Jain (Springer International Publishing, Cham, 2022), pp.393–444

    Chapter  Google Scholar 

  3. G.A. Williams, Z.M. Saleh, P. Hari, Nuclear quadrupole resonance as a non-destructive testing tool (Springer US, Boston, 1992). https://doi.org/10.1007/978-1-4615-2848-7_86

    Book  Google Scholar 

  4. C. Monea, N. Bizon, Nuclear quadrupole resonance spectroscopy (Springer International Publishing, Cham, 2022). https://doi.org/10.1007/978-3-030-87861-0_3

    Book  Google Scholar 

  5. A. Weiss, S. Wigand, Correlation of NQR and chemical bond parameter. Zeitschrift für Naturforschung A (1990). https://doi.org/10.1515/zna-1990-3-403

    Article  Google Scholar 

  6. W. Shao, J. Barras, K. Althoefer, P. Kosmas, Detecting NQR signals severely polluted by interference. Signal Process. 138, 256–264 (2017). https://doi.org/10.1016/j.sigpro.2017.03.032

    Article  Google Scholar 

  7. M. Ibrahim, D.J. Parrish, T.W. Brown, P.J. McDonald, decision tree pattern recognition model for radio frequency interference suppression in NQR Experiments. Sensors 19, 1–16 (2019). https://doi.org/10.3390/s19143153

    Article  Google Scholar 

  8. J. Yu, J. Li, B. Sun, J. Chen, C. Li, Multiclass radio frequency interference detection and suppression for SAR based on the single shot MultiBox Detector. Sensors 18, 4034 (2018). https://doi.org/10.3390/s18114034

    Article  ADS  Google Scholar 

  9. L. Yang, H. Zheng, J. Feng, N. Li, J. Chen, Detection and suppression of narrow band RFI for synthetic aperture radar imaging. Chin. J. Aeronaut. (2015). https://doi.org/10.1016/j.cja.2015.06.018

    Article  Google Scholar 

  10. J. Jover, S. Aissani, L. Guendouz, A. Thomas, D. Canet, NQR detection of sodium nitrite recrystallized in wood. NATO Sci. Peace Secur. Ser. B (2015). https://doi.org/10.1007/978-94-007-7265-6-7

    Article  Google Scholar 

  11. D. Canet, M. Ferrari, Fundamentals of pulsed nitrogen-14 quadrupole resonance (Springer Netherlands, Dordrecht, 2009). https://doi.org/10.1007/978-90-481-3062-7_1

    Book  Google Scholar 

  12. A. Sarra, L. Guendouz, P.-L. Marande, D. Canet, Toward nitrogen-14 nuclear quadrupole resonance imaging by nutation experiments performed with a radio-frequency field gradient. Solid State Nucl. Magn. Reson. (2016). https://doi.org/10.1016/j.ssnmr.2016.12.007

    Article  Google Scholar 

  13. J. Glickstein, S. Mandal, A cryogenically-cooled high sensitivity nuclear quadrupole resonance spectrometer. arXiv (2022). https://doi.org/10.48550/arXiv.2208.01552

    Article  Google Scholar 

  14. P. Hemnani, A. Rajarajan, G. Joshi, S.V.G. Ravindranath, Design of probe for nqr/nmr detection. Int. J. Electr. Comput. Eng. (IJECE) 10, 3468 (2020). https://doi.org/10.11591/ijece.v10i4.pp3468-3475

    Article  Google Scholar 

  15. M. Mikhemar, H. Darabi and A. Abidi, "A tunable integrated duplexer with 50dB isolation in 40nm CMOS," 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, USA, pp. 386–387,387a, doi: https://doi.org/10.1109/ISSCC.2009.4977470 (2009).

  16. B. van Liempd, B. Hershberg, K. Raczkowski, S. Ariumi, U. Karthaus, K.F. Bink, J. Craninckx, 2.2 a +70dbm iip3 single-ended electrical-balance duplexer in 0.18 um soi cmos, Vol. 58. doi:https://doi.org/10.1109/ISSCC.2015.7062851 (2015).

  17. J.B. Miller, Nuclear quadrupole resonance detection of explosives, in Counterterrorist detection techniques of explosives. ed. by J.B. Miller (Elsevier Science BV, Amsterdam, 2007), pp.157–198

    Chapter  Google Scholar 

  18. Robert Ayrapetian, Trausti Thor Kristjansson, Philip Ryan Hilmes, Carlo Murgia. Multichannel noise cancellation using frequency-domain spectrum masking. – “United States Patent”, Patent No.: US 10,553,236 B1 (2020).

  19. Zhu, K., Zhao, Z., & Jia, H. Nuclear quadrupole resonance signal detectability enhancement methods—An overview. In 2017 International Conference on Information and Communication Technology Convergence (ICTC) (pp. 278–281). IEEE (2017).

  20. Silani, Y., Smits, J., Fescenko, I., Malone, M. W., McDowell, A. F., Jarmola, A., & Acosta, V. M. Nuclear quadrupole resonance spectroscopy with a femtotesla diamond magnetometer. arXiv preprint arXiv:2302.12401 (2023).

  21. P. Hemnani, A.K. Rajarajan, G. Joshi, S.V.G. Ravindranath, Detection of NQR signals using wavelet transform and adaptive filters. Int. J. Instru. Technol. 2(1), 34–49 (2018)

    Google Scholar 

  22. Oproescu, M., Iana, G. V., & Monea, C. Application of genetic algorithm for optimization of NQR signal detection. In 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI) (pp. 1–4). IEEE (2019).

  23. W. Li, Z. Zhao, J. Tang, F. He, Y. Li, H. Xiao, Performance analysis and optimal design of the adaptive interference cancellation system. IEEE Trans. Electromagn. Compat. 55(6), 1068–1075 (2013). https://doi.org/10.1109/TEMC.2013.2265803

    Article  ADS  Google Scholar 

  24. A.Balanis, Constantine. Antenna Theory - Analysis and Design. 4th Edition, 2016, P. 270 (2017).

  25. H. Zhou, B. Wen, Wu. Shicai, Dense radio frequency interference suppression in HF radars. IEEE Signal Process. Lett. 12(5), 361–364 (2005). https://doi.org/10.1109/LSP.2005.845603

    Article  ADS  Google Scholar 

  26. S.-W. Chou, G.-R. Shiu, H.-C. Chang, W.-P. Peng, Wavelet-based method for time-domain noise analysis and reduction in a frequency-scan ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 23(11), 1855–1864 (2012). https://doi.org/10.1007/s13361-012-0455-2

    Article  ADS  Google Scholar 

  27. H. Qin, F. He, J. Meng, Q. Wang, Analysis and optimal design of radio-frequency interference adaptive cancellation system with delay mismatch. IEEE Trans. Electromagn. Compat. 61(6), 2015–2023 (2019). https://doi.org/10.1109/TEMC.2019.2950718

    Article  Google Scholar 

  28. C. Monea, N. Bizon, Development of signal analysis algorithms for nqr detection, in Signal processing and analysis techniques for nuclear quadrupole resonance spectroscopy. ed. by C. Monea, N. Bizon (Springer International Publishing, Cham, 2022), pp.109–142

    Chapter  Google Scholar 

  29. B. Vaferi, R. Eslamloueyan, S. Ayatollahi, Automatic recognition of oil reservoir models from well testing data by using multi-layer perceptron networks. J. Pet. Sci. Eng. 77, 254–262 (2011)

    Article  Google Scholar 

  30. A. Canakci, S. Ozsahin, T. Varol, Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural networks. Powder Technol. 228, 26–35 (2012)

    Article  Google Scholar 

  31. B. Vaferi, F. Samimi, E. Pakgohar, D. Mowla, Artificial neural network approach for prediction of thermal behavior of nanofluids flowing through circular tubes. Powder Technol. 267, 1–10 (2014)

    Article  Google Scholar 

  32. A.B. Çolak, Developing optimal artificial neural network (ANN) to predict the specific heat of water based yttrium oxide (Y2O3) nanofluid according to the experimental data and proposing new correlation. Heat Transf. Res. 51, 1565–1586 (2020)

    Article  ADS  Google Scholar 

  33. E. Ahmadloo, S. Azizi, Prediction of thermal conductivity of various nanofluids using artificial neural network. Int. Commun. Heat Mass Transf. 74, 69–75 (2016)

    Article  Google Scholar 

  34. A.B. Çolak, A novel comparative investigation of the effect of the number of neurons on the predictive performance of the artificial neural network: an experimental study on the thermal conductivity of ZrO2 nanofluid. Int. J. Energy Res. 45, 18944–18956 (2021)

    Article  Google Scholar 

  35. A. Ali, A. Abdulrahman, S. Garg, K. Maqsood, G. Murshid, Application of artificial neural networks (ANN) for vapor-liquidsolid equilibrium prediction for CH4-CO2 binary mixture. Greenh. Gases Sci. Technol. 9, 67–78 (2019)

    Article  Google Scholar 

  36. F.A. Abdul Kareem, A.M. Shariff, S. Ullah, S. Garg, F. Dreisbach, L.K. Keong, N. Mellon, Experimental and neural network modeling of partial uptake for a carbon dioxide/methane/water ternary mixture on 13X zeolite. Energy Technol. 5, 1373–1391 (2017)

    Article  Google Scholar 

  37. M. Vafaei, M. Afrand, N. Sina, R. Kalbasi, F. Sourani, H. Teimouri, Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks. Phys. E Low Dimens. Syst. Nanostruct. 85, 90–96 (2017)

    Article  ADS  Google Scholar 

  38. A. Akhgar, D. Toghraie, N. Sina, M. Afrand, Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/Water-ethylene glycol hybrid nanofluid. Powder Technol. 355, 602–610 (2019)

    Article  Google Scholar 

  39. S. Öcal, M. Gökçek, A.B. Çolak, M. Korkanç, A comprehensive and comparative experimental analysis on thermal conductivity of TiO2-CaCO3/Water hybrid nanofluid: proposing new correlation and artificial neural network optimization. Heat Transf. Res. 52, 55–79 (2021)

    Article  Google Scholar 

  40. A.B. Çolak, O. Yıldız, M. Bayrak, B.S. Tezekici, Experimental study for predicting the specific heat of water based Cu-Al2O3 hybrid nanofluid using artificial neural network and proposing new correlation. Int. J. Energy Res. 44, 7198–7215 (2020)

    Article  Google Scholar 

  41. O. Acikgoz, A.B. Çolak, M. Camci, Y. Karakoyun, A.S. Dalkilic, Machine learning approach to predict the heat transfer coefficients pertaining to a radiant cooling system coupled with mixed and forced convection. Int. J. Therm. Sci. 178, 107624 (2022)

    Article  Google Scholar 

  42. O. Kalkan, A.B. Colak, A. Celen, K. Bakirci, A.S. Dalkilic, Prediction of experimental thermal performance of new designed cold plate for electric vehicles’ Li-ion pouch-type battery with artificial neural network. J. Energy Storage 48, 103981 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Afarideh or M Ghergherehchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi A. M, M.S., Afarideh, H., Ghergherehchi, M. et al. Artificial neural network-based sodium nitrite NQR analysis in an urban noisy environment. J. Korean Phys. Soc. 83, 172–178 (2023). https://doi.org/10.1007/s40042-023-00861-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00861-3

Keywords

Navigation