Skip to main content
Log in

Impact-monitoring characteristics of piezoelectric smart cement for structural reliability

  • Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Piezoelectric sensors are useful for structural health monitoring (SHM) applications as they can sense mechanical deformations caused by impact or pressure without external power sources. However, commercial piezoelectric sensors are not suitable for large structures, such as concrete buildings, owing to their low cost-effectiveness and poor bonding compatibility with concrete. Therefore, in this study, piezoelectric cement composites were developed using piezoelectric nano powder with a cement matrix. The impact sensitivity values of the composites with varying piezoelectric nano powder content (1, 5, and 10 wt%) were measured, and the maximum impact sensitivity obtained was 3.9 μV/N at 10 wt%. It was revealed that optimizing the filler concentration for high sensitivity and accuracy is required for impact-monitoring applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The data generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. C.R. Farrer, K. Worden, An introduction to structural health monitoring. Philos. Trans. R. Soc. A 365, 303–315 (2007)

    Article  ADS  Google Scholar 

  2. G. Stojanović, M. Radovanović, M. Malešev, V. Radonjanin, Monitoring of water content in building materials using a wireless passive sensor. Sensors 10, 4270–4280 (2010)

    Article  ADS  Google Scholar 

  3. P. Pekka, M. Ilkka, N. Kaj, S. Heikki, High frequency and ultrahigh frequency radio frequency identification passive sensor transponders for humidity and temperature measurement within building structures. IEEE Trans. Instum. Meas. 62, 2559–2566 (2013)

    Article  ADS  Google Scholar 

  4. G. Park, T. Rosing, M.D. Todd, C.R. Farrar, W. Hodgkiss, Energy harvesting for structural health monitoring sensor networks. J. Infrastruct. Syst. 14, 64–79 (2008)

    Article  Google Scholar 

  5. J. Curie, P. Curie, Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclines. Bull. Mineral. 3, 90–93 (1880)

    MATH  Google Scholar 

  6. I. Payo, J.M. Hale, Sensitivity analysis of piezoelectric paint sensors made up of PZT ceramic powder and water-based acrylic polymer. Sens. Actuator A Phys. 168, 77–89 (2011)

    Article  Google Scholar 

  7. Y. Zhang, In situ fatigue crack detection using piezoelectric paint sensor. J. Intell. Mater. Syst. Struct. 17, 843–852 (2006)

    Article  Google Scholar 

  8. D.-H. Han, L.-H. Kang, Piezoelectric characteristics of PNN-PZT/epoxy paint sensor according to the poling conditions. Sens. Actuator A Phys. 269, 419–426 (2018)

    Article  Google Scholar 

  9. D.-H. Han, L.-H. Kang, Piezoelectric properties of paint sensor according to piezoelectric materials. Funct. Compos. Struct. 2, 025002 (2020)

    Article  ADS  Google Scholar 

  10. D.-H. Han, S.-B. Park, L.-H. Kang, Impact signal monitoring of a composite structure using piezoelectric paint sensor. Compos. Res. 27, 141–145 (2014)

    Article  Google Scholar 

  11. K. Choi, W. Choi, C. Yu, Y.T. Park, Enhanced piezoelectric behavior of PVDF nanocomposite by AC dielectrophoresis alignment of ZnO nanowires. J. Nanomater. 2017, 6590121 (2017)

    Article  Google Scholar 

  12. W. Choi, K. Choi, G. Yang, J.C. Kim, C. Yu, Improving piezoelectric performance of lead-free polymer composites with high aspect ratio BaTiO3 nanowires. Polym. Test. 53, 143–148 (2016)

    Article  Google Scholar 

  13. S.-H. Kang, M. Kang, L.-H. Kang, Piezoelectric smart composite blades for collision monitoring: measurement of mechanical properties and impact sensitivity. Compos. Struct. 202, 1295–1307 (2018)

    Article  Google Scholar 

  14. K. Choi, M.-Y. Hwang, D. Kang, M. Kang, D. Ahn, L.-H. Kang, Impact monitoring characteristics of piezoelectric paint sensor by thermal fatigue analysis for railroad vehicle applications. Struct. Health. Monit. 19, 1951–1962 (2020)

    Article  Google Scholar 

  15. M. Matsubara, K. Kikuta, S. Hirano, Piezoelectric properties of (K0.5Na0.5)(Nb1xTax)O3−K5.4CuTa10O29 ceramics. J. Appl. Phys. 97, 114105 (2005)

    Article  ADS  Google Scholar 

  16. G. D’Ambrogio, O. Zahhaf, M. Bordet, M.Q. Le, N.D. Schiava, R. Liang, P. Cottinet, J. Capsal, Structuring BaTiO3/PDMS nanocomposite via dielectrophoresis for fractional flow reserve measurement. Adv. Eng. Mater. 23, 2100341 (2021)

    Article  Google Scholar 

  17. F. Owusu, F.A. Nuesch, D.M. Opris, Stretchable high response piezoelectric elastomers based on polable polynorbornene fillers in a polydimethylsiloxane matrix. Adv. Funct. Mater. 2022, 2207083 (2022)

    Article  Google Scholar 

  18. G. Malucellia, A. Fioravantibc, L. Franciosod, C.D. Pascalid, M.A. Signored, M.C. Carottab, A. Bonannob, D. Duraccioae, Preparation and characterization of UV-cured composite films containing ZnO nanostructures: effect of filler geometric features on piezoelectric response. Prog. Org. Coat. 109, 45–54 (2017)

    Article  Google Scholar 

  19. Z. Li, B. Dong, D. Zhang, Influence of polarization on properties of 0–3 cement-based PZT composites. Cem. Concr. Compos. 27, 27–32 (2005)

    Article  Google Scholar 

  20. A. Chaipanich, N. Jaitanong, T. Tunkasiri, Fabrication and properties of PZT—ordinary Portland cement composites. Mater. Lett. 61, 5206–5208 (2007)

    Article  Google Scholar 

  21. N. Jaitanong, A. Chaipanich, T. Tunkasiri, Properties 0–3 PZT—Portland cement composites. Ceram. Int. 34, 793–795 (2008)

    Article  Google Scholar 

  22. A. Chaipanich, Dielectric and piezoelectric properties of PZT—silica fume cement composites. Curr. Appl. Phys. 7, 532–536 (2007)

    Article  ADS  Google Scholar 

  23. Y. Zhang, Z. Liu, F. Ding, W. Zhang, Effect of piezoelectric ceramic particles size gradation on piezoelectric properties of 0–3 cement-based piezoelectric composites. Smart Mater. Struct. 27, 085029 (2018)

    Article  ADS  Google Scholar 

  24. P. Chomyen, R. Potong, R. Rianyoi, A. Ngamjarurojana, P. Chindaprasirt, A. Chaipanich, Microstructure, dielectric and piezoelectric properties of 0–3 lead free barium zirconate titanate ceramic-Portland fly ash cement composites. Ceram. Int. 44, 76–82 (2018)

    Article  Google Scholar 

  25. T. Wittinanon, R. Rianyoi, A. Ngamjarurojana, A. Chaipanich, Effect of polyvinylidene fluoride on the acoustic impedance matching, poling enhancement and piezoelectric properties of 0–3 smart lead-free piezoelectric Portland cement composites. J. Electroceram. 44, 232–241 (2020)

    Article  Google Scholar 

  26. A.O. Sanches, G.F. Teixeira, M.A. Zaghete, E. Longo, J.A. Malmonge, M.J. Silva, W.K. Sakamoto, Influence of polymer insertion on the dielectric, piezoelectric and acoustic properties of 1–0–3 polyurethane/cement-based piezo composite. Mater. Res. Bull. 119, 110541 (2019)

    Article  Google Scholar 

  27. X. Cheng, D. Xu, L. Lu, S. Huang, M. Jiang, Performance investigation of 1–3 piezoelectric ceramic–cement composite. Mater. Chem. Phys. 121, 63–69 (2010)

    Article  ADS  Google Scholar 

  28. L. Qin, S. Huang, X. Cheng, Y. Lu, Z. Li, The application of 1–3 cement-based piezoelectric transducers in active and passive health monitoring for concrete structures. Smart Mater. Struct. 18, 095018 (2009)

    Article  ADS  Google Scholar 

  29. D. Xu, X. Cheng, X. Guo, S. Huang, Design, fabrication and property investigation of cement/polymer based 1–3 connectivity piezo-damping composites. Constr. Build. Mater. 84, 219–223 (2015)

    Article  Google Scholar 

  30. X. Guan, Y. Zhang, H. Li, J. Ou, PZT/PVDF composites doped with carbon nanotubes. Sens. Actuator A Phys. 194, 228–231 (2013)

    Article  Google Scholar 

  31. R. Li, Q. Guo, Z. Shi, J. Pei, Effects of conductive carbon black on PZT/PVDF composites. Ferroelectrics 526, 176–186 (2018)

    Article  ADS  Google Scholar 

  32. X.-F. Liu, C.-X. Xiong, H.-J. Sun, L.-J. Dong, R. Li, Y. Liu, Piezoelectric and dielectric properties of PZT/PVC and graphite doped with PZT/PVC composites. Mater. Sci. Eng. B 127, 261–266 (2006)

    Article  Google Scholar 

  33. M.-Y. Hwang, L.-H. Kang, Characteristics and fabrication of piezoelectric GFRP using smart resin prepreg for detecting impact signals. Compos. Sci. Technol. 194, 224–233 (2018)

    Article  Google Scholar 

Download references

Funding

This research was supported by a grant from the R&D Program of the Korea Railroad Research Institute, the Ministry of Trade, Industry, and Energy (MOTIE, Korea) under the Sensor Industry Enhancement Program (20003125) and National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. RS-2023-00253910).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lae-Hyong Kang or Kyungwho Choi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choe, J., Bae, H., Rim, Y.S. et al. Impact-monitoring characteristics of piezoelectric smart cement for structural reliability. J. Korean Phys. Soc. 83, 209–215 (2023). https://doi.org/10.1007/s40042-023-00859-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00859-x

Keywords

Navigation