Skip to main content
Log in

Overview of fusion-like neutron sources based on high-intensity linear accelerators

  • Original Paper - Particles and Nuclei
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A dedicated linear accelerator for continuous wave (CW) \(\mathrm D^+\) beams to generate fusion-like neutrons is crucial for the breeding blanket module tests and fusion material irradiation experiments. In this article, we introduce the world-wide activities for such accelerator facilities. Then, we present the case study, pre-conceptual design, and major component specification overview for developing a linear accelerator that could provide the modest beam parameters (40 MeV, maximum 10 mA CW) for breeding module tests. We look into the specifications of the facility and prepare a layout of the envisioned accelerator, which could be aligned with the Korean domestic fusion program. We also carry out the preliminary beam dynamics/optics calculations and operation scenario development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fact sheet: developing a bold vision for commercial fusion energy (The White House Press Releases, 2022)

  2. H. Han, S. Park, C. Sung, J. Kang, Y. H. Lee, J. Chung, Y. S. Na, et al., A sustained high-temperature fusion plasma regime facilitated by fast ions. Nature 609 (7926), 269–275 (2022)

    Article  ADS  Google Scholar 

  3. J. Knaster, Y. Okumura, Accelerators for fusion materials testing. Rev. Accel. Sci. Technol. 8, 115 (2015)

    Article  Google Scholar 

  4. J. Knaster, A. Moeslang, T. Muroga, Materials research for fusion. Nat. Phys. 12, 424 (2016)

    Article  Google Scholar 

  5. W. Krolas, A. Ibarra, F. Arbeiter, F. Arranz, D. Bernardi, M. Cappelli et al., The IFMIF-DONES fusion oriented neutron source: evolution of the design. Nucl. Fus. 61, 125002 (2021)

    Article  ADS  Google Scholar 

  6. S. Cho, Technical gaps between HCCR TBM and DEMO blanket and their facilities development/plans, 1st iFPC (Jeju, Korea, 2022)

  7. S. Hong, S. Kwon, M. Ahn et al., Neutronics analysis for conceptual design of target system based on a deuteron accelerator-driven fusion neutron source, 32nd SOFT (Dubrovnik, Croatia, 2022)

    Google Scholar 

  8. T. Junquera, The SPIRAL2 project: construction progress and recent developments on the SC linac driver. In 13th International Conference on RF Superconductivity (SRF 2007). Joint Accelerator Conferences Website (2007). pp. 35–41

  9. E. Petit, Progress of the SPIRAL2 project. In 2nd International Particle Accelerator Conference (IPAC2011) (2011). pp. 1912–1916

  10. P. Dolegieviez, R. Ferdinand, X. Ledoux, H. Savajols, F. Varenne et al., Status of the SPIRAL2 project. In Proceedings of 10th International Particle Accelerator Conference (IPAC’19) (2019). pp. 844–847

  11. N. Pichoff, P. Bredy, G. Ferrand, P. Girardot, F. Gougnaud, M. Jacquemet, A. Mosnier, P. Bertrand, M. Di Giacomo, R. Ferdinand et al., The SARAF-linac project for SARAF-Phase 2. In Proceedings of 6th International Particle Accelerator Conference (IPAC'15) (2015). pp. 3683–3685

  12. N. Pichoff, N. Bazin, D. Berkovits, D. Chirpaz-Cerbat, R. Cubizolles, M. Di Giacomo, J. Dumas, R. Duperrier, G. Ferrand, B. Gastineau et al., The SARAF-LINAC project 2017 status. In Proceedings of 8th International Particle Accelerator Conference (IPAC’17) (2017)

  13. P. Garin, M. Sugimoto et al., Main baseline of IFMIF/EVEDA project. Fus. Eng. Des. 84, 259 (2009)

    Article  Google Scholar 

  14. S. Ishida, P. Cara, H. Dzitko, A. Kasugai, K. Sakamoto et al., Progress of IFMIF/EVEDA project and prospects for A-FNS. In 19th International Conference on RF Superconductivity (SRF2019) (Dresden, Germany, 2019)

  15. A. Ibarra, F. Arbeiter, D. Bernardi, M. Cappelli, A. Garcia, R. Heidinger, W. Krolas, U. Fischer, F. Martin-Fuertes, G. Micciché et al., The IFMIF-DONES project: preliminary engineering design. Nucl. Fusion 58, 105002 (2018)

    Article  ADS  Google Scholar 

  16. W.-P. Dou, W.-L. Chen, F.-F. Wang, Z.-J. Wang, C.-X. Li, Q. Wu, C. Wang, W.-S. Wang, H. Jia, P. Zhang et al., Beam dynamics and commissioning of CW RFQ for a compact deuteron-beryllium neutron source. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 903, 85 (2018)

    Article  ADS  Google Scholar 

  17. N. Lecesne, C. Eleon, C. Feierstein, G. Gaubert, Y. Huguet, P. Jardin, F. Lemagnen, R. Leroy, J. Pacquet, F. Pellemoine et al., The radioactive ion beam production systems for the SPIRAL2 project. Rev. Sci. Instrum. 79, 02A907 (2008)

    Article  Google Scholar 

  18. M. Tessler, M. Paul, T. Palchan, S. Halfon, L. Weissman, N. Hazenshprung, A. Kreisel, T. Makmal, A. Shor, I. Silverman et al., Nucleosynthesis reactions with the high-intensity SARAF-LiLiT neutron source. In Proceedings of “The 26th International Nuclear Physics Conference”, PoS (INPC2016), vol. 139 (2017)

  19. I. Mardor, O. Aviv, M. Avrigeanu, D. Berkovits, A. Dahan, T. Dickel, I. Eliyahu, M. Gai, I. Gavish-Segev, S. Halfon et al., The Soreq applied research accelerator facility (SARAF): overview, research programs and future plans. Eur. Phys. J. A 54, 1 (2018)

    Article  Google Scholar 

  20. J. Knaster, A. Ibarra, J. Abal, A. Abou-Sena, F. Arbeiter, F. Arranz, J. Arroyo, E. Bargallo, P. Beauvais, D. Bernardi et al., The accomplishment of the engineering design activities of IFMIF/EVEDA: the European-Japanese project towards a Li (d, xn) fusion relevant neutron source. Nucl. Fusion 55, 086003 (2015)

    Article  ADS  Google Scholar 

  21. P. Nghiem, N. Chauvin, M. Comunian, O. Delferriere, R. Duperrier, A. Mosnier, C. Oliver, W. Simeoni, D. Uriot, Dynamics of the IFMIF very high-intensity beam. Laser Part. Beams 32, 109 (2014)

    Article  ADS  Google Scholar 

  22. C. Oliver, P. Cara, N. Chauvin, A. Gallego, and A. Ibarra, Phase-space transformation for a uniform target irradiation at DONES. In 28th International Linear Accelerator Conference (2016). p. TUPRC006

  23. K.-W. Tao, Y.-L. Zhang, H.-J. Cai, G. Yang, S. Zhang, X.-C. Zhang, Y. Yang, P. Lin, L.-W. Chen, X.-S. Yan et al., Simulation studies of the granular flow beryllium target for the compact materials irradiation facility. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 942, 162401 (2019)

    Article  Google Scholar 

  24. A. Perry, D. Berkovits, H. Dafna, B. Kaizer, Y. Luner, J. Rodnizki, A. Shor, I. Silverman, R. Duperrier, G. Ferrand et al., Comissioning of the new SARAF RFQ and design of the new linac. In 29th Linear Accelerator Conference (LINAC’18), (Shanghai, China) (2018)

  25. L. Weissman, A. Perry, A. Bechtold, D. Berkovits, B. Kaizer, Y. Luner, P. Niewieczerzal, J. Rodnizki, I. Silverman, A. Shor et al., Installation, high-power conditioning and beam commissioning of the upgraded SARAF 4-rods RFQ. J. Instrum. 13(05), T05004

  26. L. Zhao, X. Zhu, J. Dumas, D. Chirpaz, T. Joannem, F. Gohier, N. Solenne, P. Guiho, R. Braud, O. Piquet et al., Study and test of the rebuncher for SARAF-linac phase II. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 986, 164716 (2021)

    Article  Google Scholar 

  27. P.A.P. Nghiem, B. Dalena, J. Dumas, N. Pichoff, D. Uriot et al., Strategy of beam tuning implementation for the SARAF MEBT and SC linac. In Proceedings of 8th International Particle Accelerator Conference (IPAC’17), Copenhagen, Denmark, 2017 (JACOW, Geneva, Switzerland, 2017). pp. 652–654

  28. G. Ferrand, N. Pichoff, Designing a 176 MHz superconducting half-wave resonator for SARAF-phase II-studies and results. IEEE Trans. Appl. Supercond. 32, 1 (2022)

    Article  Google Scholar 

  29. G. Ferrand, L. Boudjaoui, D. Chirpaz-Cerbat, P. Hardy, F. Leseigneur, C. Madec, N. Misiara, N. Pichoff et al., Design of the HWR cavities for SARAF. In Proceedings of 7th International Particle Accelerator Conference (IPAC’16) (2016). pp. 2119–2121

  30. N. Pichoff, D. Chirpaz-Cerbat, R. Cubizolles, J. Dumas, R. Duperrier, G. Ferrand, B. Gastineau, F. Leseigneur, C. Madec, T. Plaisant et al., Discussion on SARAF-linac cryomodules. In 61st ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams (2018). p. TUA2WC01

  31. Y. Yuri, N. Miyawaki, T. Kamiya, W. Yokota, K. Arakawa, M. Fukuda, Uniformization of the transverse beam profile by means of nonlinear focusing method. Phys. Rev. Spec. Top. Accel. Beams 10, 104001 (2007)

    Article  ADS  Google Scholar 

  32. P. Nghiem, N. Chauvin, M. Comunian, O. Delferriere, R. Duperrier, A. Mosnier, C. Oliver, D. Uriot, The IFMIF-EVEDA challenges in beam dynamics and their treatment. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 654, 63 (2011)

    Article  ADS  Google Scholar 

  33. O. Nomen, D. Sanchez-Herranz, C. Oliver, I. Podadera, R. Varela, F. Ogando, V. Hauer, F. Arranz, S. Coloma, R. Heidinger et al., Preliminary design of the HEBT of IFMIF DONES. Fusion Eng. Des. 153, 111515 (2020)

    Article  Google Scholar 

  34. D. Sánchez-Herranz, O. Nomen, F. Arranz, S. Coloma, I. Podadera, R. Varela, Design of the HEBT components inside TIR room of the IFMIF DONES facility. Fusion Eng. Des. 168, 112636 (2021)

    Article  Google Scholar 

  35. O. Nomen, B. Brañas, F. Ogando, F. Arranz, P. Sauvan, J. Castellanos, Lead shutter for the IFMIF LIPAc accelerator. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 901, 69 (2018)

    Article  ADS  Google Scholar 

  36. T. Kalvas, O. Tarvainen, T. Ropponen, O. Steczkiewicz, J. Ärje, H. Clark, IBSimu: a three-dimensional simulation software for charged particle optics. Rev. Sci. Instrum. 81, 02B703 (2010)

    Article  Google Scholar 

  37. L. Neri, L. Celona, High stability microwave discharge ion sources. Sci. Rep. 12, 1 (2022)

    Google Scholar 

  38. D.P. Grote, A. Friedman, J.-L. Vay, I. Haber, The Warp code: modeling high intensity ion beams. In AIP Conference Proceedings, vol 749 (American Institute of Physics, 2005). pp. 55–58.

  39. D. Winklehner, D. Leitner, A space charge compensation model for positive DC ion beams. J. Instrum. 10(10), T10006

  40. K. Crandall, in LANL Internal Report, Nr. LA-UR-96-1836 (2005)

  41. R. Duperrier, Toutatis: a radio frequency quadrupole code. Phys. Rev. Spec. Top. Accel. Beams 3, 124201 (2000)

    Article  ADS  Google Scholar 

  42. S. Liu, Y. Wei, Y. Lu, Z. Wang, M. Han, T. Wei, Y. Xia, H. Li, S. Gao, P. Zheng, Development of a radio-frequency quadrupole accelerator for the HL-2A/2M tokamak diagnostic system. Appl. Sci. 12, 4031 (2022)

    Article  Google Scholar 

  43. D. Uriot, N. Pichoff et al., Status of TraceWin code. In Proceedings of 6th International Particle Accelerator Conference (IPAC'15), 92 (2015)

Download references

Acknowledgements

This work was supported by Korea Institute of Fusion Energy (KFE) funded by the Government funds (Grant no. R &D/2022-CN2201-2 and KFE-CN2301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moses Chung.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheon, Y.L., Kim, H.W., Cosgun, E. et al. Overview of fusion-like neutron sources based on high-intensity linear accelerators. J. Korean Phys. Soc. 83, 620–633 (2023). https://doi.org/10.1007/s40042-023-00839-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00839-1

Keyword

Navigation