Skip to main content
Log in

Machine learning for prediction of atom-projected properties

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The application of machine learning (ML) and deep learning techniques in materials science has revolutionized the process of material design and property prediction. ML models have been widely used to accurately predict various material properties, such as formation energy, band gap, and bulk modulus. However, interpreting the individual contribution of each atom to the overall material properties has remained an open challenge. In this paper, we introduce an atom-projected neural network (APNN) model to directly predict the individual contributions of each atom to the material properties. We demonstrate that our model achieves a great performance comparable to that of other graph-based neural networks while providing significantly improved interpretability. The proposed model has great potential for further applications in materials science, such as predicting thermal conductivity or bulk modulus, enabling researchers to understand how individual atoms contribute to the observed properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Krizhevsky, I. Sutskever, G.E. Hinton, Commun. ACM 60, 84–90 (2017)

    Article  Google Scholar 

  2. Y. LeCun, Y. Bengio, G. Hinton, Nature 521, 436–444 (2015)

    Article  ADS  Google Scholar 

  3. R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, Npj Comput. Mater. 3, 54 (2017)

    Article  ADS  Google Scholar 

  4. G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, R. Ramprasad, Sci. Rep. 3, 1–6 (2013)

    Article  Google Scholar 

  5. L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, Npj Comput. Mater. 2, 1–7 (2016)

    Article  Google Scholar 

  6. M. Rupp, A. Tkatchenko, K.-R. Müller, O.A. Von Lilienfeld, Phys. Rev. Lett. 108, 058301 (2012)

    Article  ADS  Google Scholar 

  7. G. Hautier, C.C. Fischer, A. Jain, T. Mueller, G. Ceder, Chem. Mater. 22, 3762–3767 (2010)

    Article  Google Scholar 

  8. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller, A. Tkatchenko, Nat. Commun. 8, 13890 (2017)

    Article  ADS  Google Scholar 

  9. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104, 136403 (2010)

    Article  ADS  Google Scholar 

  10. K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Nature 559, 547–555 (2018)

    Article  ADS  Google Scholar 

  11. W. Ye, C. Chen, Z. Wang, I.-H. Chu, S.P. Ong, Nat. Commun. 9, 3800 (2018)

    Article  ADS  Google Scholar 

  12. A. Mansouri Tehrani, A.O. Oliynyk, M. Parry, Z. Rizvi, S. Couper, F. Lin, L. Miyagi, T.D. Sparks, J. Brgoch, J. Am. Chem. Soc. 140, 9844–9853 (2018)

    Article  Google Scholar 

  13. A.O. Oliynyk, A. Mar, Acc. Chem. Res. 51, 59–68 (2018)

    Article  Google Scholar 

  14. J. Behler, M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007)

    Article  ADS  Google Scholar 

  15. J.E. Moussa, Phys. Rev. Lett. 109, 059801 (2012)

    Article  ADS  Google Scholar 

  16. A.P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B 96, 019902 (2017)

    Article  ADS  Google Scholar 

  17. T. Xie, J.C. Grossman, Phys. Rev. Lett. 120, 145301 (2018)

    Article  ADS  Google Scholar 

  18. C. Chen, W. Ye, Y. Zuo, C. Zheng, S.P. Ong, Chem. Mater. 31, 3564–3572 (2019)

    Article  Google Scholar 

  19. C.W. Park, C. Wolverton, Phys. Rev. Mater. 4, 063801 (2020)

    Article  Google Scholar 

  20. S.-Y. Louis, Y. Zhao, A. Nasiri, X. Wang, Y. Song, F. Liu, J. Hu, Phys. Chem. Chem. Phys. 22, 18141–18148 (2020)

    Article  Google Scholar 

  21. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga and A. Lerer, Automatic differentiation in pytorch, NIPS-W (2017).

  22. S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl, C. Wolverton, Npj Comput. Mater. 1, 1–15 (2015)

    Article  Google Scholar 

  23. A. Jain, G. Hautier, C.J. Moore, S.P. Ong, C.C. Fischer, T. Mueller, K.A. Persson, G. Ceder, Comput. Mater. Sci. 50(8), 2295–2310 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the BK21 FOUR Program by a Pusan National University Research Grant, 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaekwang Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Lee, J. Machine learning for prediction of atom-projected properties. J. Korean Phys. Soc. 83, 315–319 (2023). https://doi.org/10.1007/s40042-023-00829-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00829-3

Keywords

Navigation