Skip to main content
Log in

Nonreciprocal spin-wave propagation in YIG/GGG: a limit on the DMI parameter

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Materials with low damping, such as Yttrium Iron Garnet (YIG), are of interest in connection with spintronic devices. A promising structure for information storage is the Skyrmion, a domain wall quasi-particle. It has been shown that the stabilization of a Skyrmion can be energetically favorable with the addition of spin–orbit coupling (SOC) through the Dzyaloshinskii–Moriya Interaction (DMI). This interaction should be largest in metals, but still present in insulators. To produce spintronic devices using YIG, we must evaluate the DMI interaction inherent in the substrate used to grow the YIG, which is generally Gadolinium Gallium Garnet (GGG). In this paper, we measure nonreciprocal spin-wave propagation in a thick YIG film to place a limit on the DMI parameter in a YIG/GGG bilayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. X. Yu et al., Nat. Comm. 3, 988 (2012)

    Article  ADS  Google Scholar 

  2. K.L. Wang, J.G. Alzate, P. Khalili Amiri, Low-power non-volatile spintronic memory: STT-RAM and beyond. J. Phys. D Appl. Phys. 46(7), 074003 (2013)

    Article  ADS  Google Scholar 

  3. A. Hirohata, K. Takanashi, Future perspectives for spintronic devices. J. Phys. D: Appl. Phys. 47(19), 193001 (2014)

    Article  ADS  Google Scholar 

  4. S. Rohart, A. Thiaville, Phys. Rev. B 88(18), 184422 (2013)

    Article  ADS  Google Scholar 

  5. A. Fert, V. Cros, J. Sampaio, Nat. Nanotech. 8(3), 152 (2013)

    Article  ADS  Google Scholar 

  6. R. Tomasello, Sci. Rep. 4, 6784 (2014)

    Article  Google Scholar 

  7. R. Wiesendanger, Nat. Rev. Mater. 1(7), 16044 (2016)

    Article  ADS  Google Scholar 

  8. I. Dzyaloshinsky, J. Phys. Chem. Solids 4(4), 241 (1958)

    Article  ADS  Google Scholar 

  9. T. Moriya, Phys. Rev. 120(1), 91 (1960)

    Article  ADS  Google Scholar 

  10. A. Crpieux, C. Lacroix, J. Magn. Magn. Mater. 182(3), 341 (1998)

    Article  ADS  Google Scholar 

  11. A.A. Stashkevich et al., Phys. Rev. B 91(21), 214409 (2015)

    Article  ADS  Google Scholar 

  12. K. Di et al., Appl. Phys. Lett. 106(5), 052403 (2015)

    Article  ADS  Google Scholar 

  13. J. Lee et al., Nano Lett. 16(1), 62 (2015)

    Article  ADS  Google Scholar 

  14. J. Moon et al., Phys. Rev. B 88(18), 184404 (2013)

    Article  ADS  Google Scholar 

  15. B. Heinrich et al., Phys. Rev. Lett. 107(6), 066604 (2011)

    Article  ADS  Google Scholar 

  16. J. Trossman et al., AIP Adv. 8(5), 056024 (2018)

    Article  ADS  Google Scholar 

  17. X. Zhang et al., Phys. Rev. Lett. 113(3), 037202 (2014)

    Article  ADS  Google Scholar 

  18. R.W. Damon, J.R. Eshbach, J. Phys. Chem. Solids 19(3–4), 308–320 (1961)

    Article  ADS  Google Scholar 

  19. S.O. Demokritov, B. Hillebrands, A.N. Slavin, Phys. Rep. 348(6), 441 (2001)

    Article  ADS  Google Scholar 

  20. T. Schneider et al., Phys. Rev. B 77(21), 214411 (2008)

    Article  ADS  Google Scholar 

  21. H. Wang et al., Phys. Rev. Lett. 128, 049902 (2022)

    Article  ADS  Google Scholar 

  22. Q. Zhang et al., Phys. Rev. Lett. 128, 167202 (2022)

    Article  ADS  Google Scholar 

  23. C. Hu, et al. (2023) Small, 2207206

  24. J. Yu et al., Sci Rep 6, 32629 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was carried out under support from the U.S. Department of Energy under Grant DE-SC00144 at Northwestern, and Education and Research Promotion Program of KOREATECH in 2021 at Korea University of Technology and Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonbae Bang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trossman, J., Lim, J., Ketterson, J.B. et al. Nonreciprocal spin-wave propagation in YIG/GGG: a limit on the DMI parameter. J. Korean Phys. Soc. 83, 310–314 (2023). https://doi.org/10.1007/s40042-023-00822-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00822-w

Keywords

Navigation