Skip to main content
Log in

Effect and design of Mn2+ doped ZnO nanostructures for photodegradation and energy storage devices

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This paper studies the synthesis of Zn1-xMnxO (x = 0.00, 0.03, 0.06) nanoparticles using the co-precipitation method. The structural, morphological and optical properties were characterized by XRD, FTIR, SEM, HR-TEM and UV–Visible DRS analysis. The structural analysis indicated a hexagonal shape with good crystallinity of the samples. The FTIR absorption peaks confirmed the formation of Zn–O bonding. The surface morphology and particle size were observed by SEM and HR-TEM analysis. The EDS spectra determined the presence of elements Zn, Mn, and O in the samples. The optical band-gap of Mn-doped nanoparticles decreased with increasing concentration from 3.27 eV to 3.09 eV. The photocatalytic activity has been observed with methylene blue (MB) dye under solar irradiation. The Zn0.94Mn0.06O (Mn = 0.06) nanoparticles photocatalyst has the highest degradation efficiency at 94.08% within 180 min. This result shows that the Mn-doped ZnO enhanced the performance of the photocatalytic activity. In electrochemical performance analysis, undoped and Mn-doped electrodes have been studied 10 mV/s to 100 mV/s scan rate. Mn-doped electrodes decrease the specific capacitance due to low surface area. However, all the undoped and Mn-doped electrodes possess reduction and oxidation peaks, which is considerable for suitable electrode materials for energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P.R. Maddigpu et al., J. of hazardous materials 343, 157–165 (2018)

    Article  Google Scholar 

  2. J. Tierling et al., Geoderma 310, 12–21 (2018)

    Article  ADS  Google Scholar 

  3. C. Feng et al., Physica B 555, 53–60 (2019)

    Article  ADS  Google Scholar 

  4. P. Ahuja et al., Appl. Surf. Sci. 427, 102–111 (2018)

    Article  ADS  Google Scholar 

  5. K.K. Jaiswal et al., Inorganic and Nano-Metal Chemistry 51(7), 995–1004 (2021)

    Article  Google Scholar 

  6. X. Shi et al., Powder Technol. 356, 726–734 (2019)

    Article  Google Scholar 

  7. J. Pandey et al., Appl Water Sci 7(4), 1669–1678 (2017)

    Article  ADS  Google Scholar 

  8. P. Lu et al., J. of Saudi Chemical Society 23(8), 1109–1118 (2019)

    Article  Google Scholar 

  9. F. Wang et al., Chem. Soc. Rev. 46(22), 6816–6854 (2017)

    Article  ADS  Google Scholar 

  10. L. Lin et al., RSC Adv. 5(115), 94539–94550 (2015)

    Article  ADS  Google Scholar 

  11. M.S. Yadav et al., J. of Mat. Sci. 29(8), 6853–6869 (2018)

    Google Scholar 

  12. A.T. Aqueel Ahmed et al., Adv Mater. Interfaces. 7(2), 1901515 (2020)

    Article  Google Scholar 

  13. A.T.A. Ahmed et al., Inter. J. Energy Res. 45(2), 1613–1626 (2021)

    Article  Google Scholar 

  14. A.T.A. Ahmed et al., Appl. Surf. Sci. 539, 148229 (2021)

    Article  Google Scholar 

  15. A. Mesaros et al., Appl. Surf. Sci. 471, 960–972 (2019)

    Article  ADS  Google Scholar 

  16. M.M. Khan et al., Bioprocess Biosyst. Eng. 43(8), 1499–1508 (2020)

    Article  Google Scholar 

  17. S. Udhayan et al., BioNanoScience 11, 703–719 (2021)

    Article  Google Scholar 

  18. K. Gurusamy et al., Mater. Technol. 37, 2218–2229 (2022)

    Article  ADS  Google Scholar 

  19. S. Anitha et al., Mater. Sci. Eng., C 108, 110387 (2020)

    Article  Google Scholar 

  20. S. Sharma et al., J. of Electronic Materials 44(12), 4710–4716 (2015)

    Article  ADS  Google Scholar 

  21. M. Amin et al., Sensors 12(10), 13842–13851 (2012)

    Article  ADS  Google Scholar 

  22. K. Rekha et al., Physica B 405(15), 3180–3185 (2010)

    Article  ADS  Google Scholar 

  23. H. Yang et al., Mater. Chem. Phys. 114(1), 279–282 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Muiruri et al., Materials 13(23), 5355 (2020)

    Article  ADS  Google Scholar 

  25. P. Singh et al., J. of Alloys and Compounds 471(1–2), 11–15 (2009)

    Article  Google Scholar 

  26. S. Muthukumaran et al., Opt. Mater. 34(11), 1946–1953 (2012)

    Article  ADS  Google Scholar 

  27. D. Anbuselvan et al., J. of Mat. Sci. 25(4), 2004–2015 (2014)

    Google Scholar 

  28. M. Faraz et al., Mater. Chem. Phys. 211, 137–143 (2018)

    Article  Google Scholar 

  29. S.A. Khan et al., Tropical J. of. Pharm. Res. 16(10), 2331–2339 (2017)

    Google Scholar 

  30. S. Sivakumar et al., Nanomaterials and Energy 11, 1–9 (2022)

    Article  Google Scholar 

  31. F.F. Li et al., Advanced Materials Research 415, 2044–2047 (2012)

    Article  ADS  Google Scholar 

  32. Y.M. Hao et al., Nano. Research Letters 7(1), 1–9 (2012)

    Article  ADS  Google Scholar 

  33. M. Khatamian et al., J. of Molecular Catalysis A: Chemical 365, 120–127 (2012)

    Article  Google Scholar 

  34. E. Baylan et al., Mater. Sci. Semicond. Process. 103, 104621 (2019)

    Article  Google Scholar 

  35. S. Thambidurai et al., J. of Alloys and Compounds 852, 156997 (2021)

    Article  Google Scholar 

  36. D.P. Joseph et al., Mol. Optic. Phys 2011, 270540 (2011)

    Google Scholar 

  37. J.C. Sin et al., Appl. Catal. B 148, 258–268 (2014)

    Article  Google Scholar 

  38. M.G. Nair et al., Mater. Lett. 65(12), 1797–1800 (2011)

    Article  Google Scholar 

  39. S. Zeljković et al., Green Chem. Lett. Rev. 15(4), 869–880 (2022)

    Article  Google Scholar 

  40. P. Panchal et al., J. colloid and interface science 563, 370–380 (2020)

    Article  ADS  Google Scholar 

  41. S. Kanimozhi et al., Ceram. Int. 47(21), 30234–30246 (2021)

    Article  Google Scholar 

  42. S. Modi et al., Nanotechnology for Environmental Engineering 5(2), 1–12 (2020)

    Article  Google Scholar 

  43. L.M. Jose et al., Nano Express 2(1), 010039 (2021)

    Article  ADS  Google Scholar 

  44. S. Sivakumar et al., Applied Surface Science Advances 12, 100344 (2022)

    Article  Google Scholar 

  45. M.A. Dar et al., Mater. Technol. 37(10), 1396–1409 (2022)

    Article  ADS  Google Scholar 

  46. R.S. Ray et al., Mater. Lett. 155, 102–105 (2015)

    Article  Google Scholar 

  47. M.A. Dar et al., J. of Energy Storage 52, 105034 (2022)

    Article  Google Scholar 

  48. S. Sivakumar et al., Materials Today: Proceedings 49, 1469–1474 (2022)

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Centralized Instrumentation and Service Laboratory (CISL), Annamalai University, for providing their analytical instrument facilities and gratefully acknowledge support by RUSA 2.0 under the Ministry of Human Resource Development, Department of Higher Education, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

YR: Conceptualization, Methodology, Formal analysis, Visualization, Compiled original draft, Writing, Editing, and Data analysis. SS: Supervision, Formal analysis, and Visualization.

Corresponding author

Correspondence to S. Sivakumar.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, S., Robinson, Y. Effect and design of Mn2+ doped ZnO nanostructures for photodegradation and energy storage devices. J. Korean Phys. Soc. 82, 1196–1210 (2023). https://doi.org/10.1007/s40042-023-00802-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00802-0

Keywords

Navigation