Skip to main content
Log in

Design of GaN/Janus-WSSe vdW heterostructure for photocatalytic water splitting: ab initio calculations

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

An Erratum to this article was published on 20 June 2023

This article has been updated

Abstract

In this paper, we systematically designed vdW heterostructures by stacking the GaN and Janus-WSSe monolayer and chose the structure that has potential to be used as photocatalysts of water splitting for further investigation. By applying a biaxial strain, the electronic, optical and photocatalytic properties of this heterostructure were investigated to explore whether it is suitable for photocatalyst of water splitting. Results show the heterostructure show a type II band alignment under a − 2% strain, and the band gap is 2.26 eV which is fit to absorb solar light. The band edge of it straddles the water redox potentials at pH = 7. And the absorption coefficient in the visible and UV light region is large, especially for ultraviolet light. In a word, this GaN/Janus-WSSe vdW heterostructure under a − 2% biaxial external strain is a potential solar photocatalyst for water splitting at pH = 7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)

    Article  ADS  Google Scholar 

  2. Z.G. Zhao, M. Miyauchi, Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts. Angew. Chem. Int. Ed. Engl. 47, 7051 (2008)

    Article  Google Scholar 

  3. L. Zhou, W. Wang, H. Xu, S. Sun, M. Shang, Bi2O3 hierarchical nanostructures: controllable synthesis, growth mechanism, and their application in photocatalysis. Chemistry 15, 1776 (2009)

    Article  Google Scholar 

  4. T. Maschmeyer, M. Che, Catalytic aspects of light-induced hydrogen generation in water with TiO2 and other photocatalysts: a simple and practical way towards a normalization. Angew. Chem. Int. Ed. Engl. 49, 1536 (2010)

    Article  Google Scholar 

  5. X.B. Chen, S. Shen, L.J. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503 (2010)

    Article  Google Scholar 

  6. Y. Qiu, M. Yang, H. Fan, Y. Zuo, Y. Shao, Y. Xu, X. Yang, S. Yang, Nanowires of α- and β-Bi2O3: phase-selective synthesis and application in photocatalysis. CrystEngComm 2011, 13 (1843)

    Google Scholar 

  7. M.Z. Rahman, C.W. Kwong, K. Davey, S.Z. Qiao, 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energ. Environ. Sci. 9, 709 (2016)

    Article  Google Scholar 

  8. Y. Sun, H. Cheng, S. Gao, Z. Sun, Q. Liu, Q. Liu, F. Lei, T. Yao, J. He, S. Wei, Y. Xie, Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew. Chem. Int. Ed. 51, 8727 (2012)

    Article  Google Scholar 

  9. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C. Alves, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850 (2013)

    Article  ADS  Google Scholar 

  10. Y. Xu, W. Zhao, R. Xu, Y. Shi, B. Zhang, Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chem. Commun. 49, 9803 (2013)

    Article  Google Scholar 

  11. S. Wang, C. Ren, H. Tian, J. Yu, M. Sun, MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: a first-principles study. Phys. Chem. Chem. Phys. 20, 13394 (2018)

    Article  Google Scholar 

  12. F. Hu, L. Tao, H. Ye, X. Li, X. Chen, ZnO/WSe2 vdW heterostructure for photocatalytic water splitting. J. Mater. Chem. C 7, 7104 (2019)

    Article  Google Scholar 

  13. Z. Zhao, C. Yang, Z. Cao, Y. Bian, B. Li, Y. Wei, Two-dimensional ZnO/BlueP van der Waals heterostructure used for visible-light driven water splitting: a first-principles study. Spectrochim. Acta. A 278, 121359 (2022)

    Article  Google Scholar 

  14. J. Wang, Y. Huang, F. Ma, J. Zhang, X. Wei, J. Liu, Strain engineering the electronic and photocatalytic properties of WS2/blue phosphene van der Waals heterostructures. Catal. Sci. Technol 11, 179 (2021)

    Article  Google Scholar 

  15. Y. Qu, X. Duan, Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 42, 2568 (2013)

    Article  Google Scholar 

  16. A.Y. Lu, H. Zhu, J. Xiao, C.P. Chuu, Y. Han, M.H. Chiu, C.C. Cheng, C.W. Yang, K.H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D.A. Muller, M.Y. Chou, X. Zhang, L.J. Li, Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744 (2017)

    Article  Google Scholar 

  17. Y. Qin, M. Sayyad, A.R. Montblanch, M.S.G. Feuer, D. Dey, M. Blei, R. Sailus, D.M. Kara, Y. Shen, S. Yang, A.S. Botana, M. Atature, S. Tongay, Reaching the excitonic limit in 2D Janus monolayers by in situ deterministic growth. Adv. Mater. 34, 2106222 (2022)

    Article  Google Scholar 

  18. Y. Luo, S. Wang, H. Shu, J.-P. Chou, K. Ren, J. Yu, M. Sun, A MoSSe/blue phosphorene vdw heterostructure with energy conversion efficiency of 19.9% for photocatalytic water splitting. Semicond. Sci. Tech. 35, 125008 (2020)

    Article  ADS  Google Scholar 

  19. K. Ren, S. Wang, Y. Luo, J.-P. Chou, J. Yu, W. Tang, M. Sun, High-efficiency photocatalyst for water splitting: a Janus MoSSe/XN (X = Ga, Al) van der Waals heterostructure. J. Phys. D: Appl. Phys. 53, 185504 (2020)

    Article  ADS  Google Scholar 

  20. G. Kresse, J. Hafner, Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115 (1993)

    Article  ADS  Google Scholar 

  21. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  22. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)

    Article  ADS  Google Scholar 

  23. S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456 (2011)

    Article  Google Scholar 

  24. A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, G.E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006)

    Article  ADS  Google Scholar 

  25. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  26. A.K. Singh, K. Mathew, H.L. Zhuang, R.G. Hennig, Computational screening of 2D materials for photocatalysis. J. Phys. Chem. Lett. 6, 1087 (2015)

    Article  Google Scholar 

  27. C. Chang, X. Fan, S. Lin, J. Kuo, Orbital analysis of electronic structure and phonon dispersion in MoS2, MoSe2, WS2, and WSe2 monolayers under strain. Phys. Rev. B 88, 195420 (2013)

    Article  ADS  Google Scholar 

  28. B. Amin, T.P. Kaloni, U. Schwingenschlögl, Strain engineering of WS2, WSe2, and WTe2. RSC. Adv. 4, 34561 (2014)

    Article  ADS  Google Scholar 

  29. R. Han, Y. Yan, Strain-tunable electric structure and magnetic anisotropy in monolayer CrSI. Phys. Chem. Chem. Phys. 21, 20892 (2019)

    Article  Google Scholar 

  30. H. Li, Y. Cui, W. Li, L. Ye, L. Mu, Strain-tunable band alignment of blue phosphorus–WX2 (X = S/Se/Te) vertical heterostructures: from first-principles study. Appl. Phys. A 126, 92 (2020)

    Article  ADS  Google Scholar 

  31. J. Huang, Y. Peng, X. Han, Tuning the electronic and optical properties of Blue P/MoSeS and Blue P/MoSSe van der Waals heterostructure via biaxial strain. Chem. Phys. Lett. 773, 138622 (2021)

    Article  Google Scholar 

  32. A.I. Kartamyshev, T.V. Vu, S. Ahmad, S. Al-Qaisi, T.D.H. Dang, N.L. Tri Dang, N.N. Hieu, First-principles calculations to investigate electronic properties of ZnO/PtSSe van der Waals heterostructure: effects of vertical strain and electric field. Chem. Phys. 551, 111333 (2021)

    Article  Google Scholar 

  33. X. Li, X. Cui, C. Xing, H. Cui, R. Zhang, Strain-tunable electronic and optical properties of Zr2CO2 MXene and MoSe2 van der Waals heterojunction: a first principles calculation. Appl. Surf. Sci. 548, 149249 (2021)

    Article  Google Scholar 

  34. L. Zhang, L. Huang, T. Yin, Y. Yang, Strain-induced tunable band offsets in blue phosphorus and WSe2 van der Waals heterostructure. Curr. Comput.-Aided Drug Des. 11, 470 (2021)

    Google Scholar 

  35. L. Lin, M. Lou, S. Li, X. Cai, Z. Zhang, H. Tao, Tuning electronic and optical properties of two–dimensional vertical van der waals arsenene/SnS2 heterostructure by strain and electric field. Appl. Surf. Sci. 572, 151209 (2022)

    Article  Google Scholar 

  36. A. Walsh, C.R.A. Catlow, Structure, stability and work functions of the low index surfaces of pure indium oxide and Sn-doped indium oxide (ITO) from density functional theory. J. Mater. Chem. 20, 10438 (2010)

    Article  Google Scholar 

  37. A.A. Gurtovenko, I. Vattulainen, Calculation of the electrostatic potential of lipid bilayers from molecular dynamics simulations: methodological issues. J. Chem. Phys. 130, 215107 (2009)

    Article  ADS  Google Scholar 

  38. H.-P. Komsa, A.V. Krasheninnikov, Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys. Rev. B 88, 085318 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Jiankang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiankang, L., Cheng, L., Jie, L. et al. Design of GaN/Janus-WSSe vdW heterostructure for photocatalytic water splitting: ab initio calculations. J. Korean Phys. Soc. 82, 1180–1186 (2023). https://doi.org/10.1007/s40042-023-00782-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00782-1

Keywords

Navigation