Skip to main content
Log in

Calculation of parallel Peltier coefficient in rectangular quantum wires under the influence of confined optical phonons and electromagnetic waves using quantum kinetic equation

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The influence of confined optical phonons (confined OP) and electromagnetic waves on the Peltier effects in rectangular quantum wires (RQW) in a parallel magnetic field is investigated. Theoretical results for the parallel Peltier coefficient (PC) are determined using the quantum kinetic equation method. It is defined as a function of the external magnetic field, amplitude, and frequency of the electromagnetic wave, temperature, and size of the RQW, especially quantum numbers \(m_1\), and \(m_2\) characterizing the confined OP. The theoretical results are numerically appraised and graphed for the GaAs RQW model. It shows that confined OP not only increases the parallel PC but also expands the resonance position compared to the unconfined OP case. Besides, the parallel PC increases significantly as the temperature rises and the confined OP is the main cause of the increase in the parallel PC at low temperatures. In addition, the resonance peaks of the parallel PC are shifted to the region of the larger magnetic field. When the width of the RQW is less than 20 nm, the parallel PC increases significantly. When the width of the RQW rises to infinity, the results of bulk semiconductors could be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Zhao, Phys. Rev. B 49, 13589 (1994)

    Article  ADS  Google Scholar 

  2. N. Nishiguchi, Phys. Rev. B 52, 5279 (1995)

    Article  ADS  Google Scholar 

  3. J. C. A. Peltier, Nouvelles expériences sur la caloricité des courans électriques (1834)

  4. M. Zebarjadi, K. Esfarjani, and A. Shakouri,MRS Online Proceedings Library (OPL) 1044 (2007)

  5. A. A. Perov, P. Pikunov, J. Exp. Theor. Phys. 133, 229–235 (2021)

    Article  ADS  Google Scholar 

  6. E. Bogachek, A. Scherbakov, U. Landman, Phys. Rev. B 60, 11678 (1999)

    Article  ADS  Google Scholar 

  7. E. Bogachek, A. Scherbakov, U. Landman, E. Bogachek, A. Scherbakov, U. Landman, Solid. Stat. Comm. 108, 851 (1998)

    Article  ADS  Google Scholar 

  8. A. Svizhenko, A. Balandin, S. BandyOPadhyay, M. Stroscio, Phys. Rev. B 57, 4687 (1998)

    Article  ADS  Google Scholar 

  9. J. Chen, Q. Ying, S. Wu, Phys. B Cond. Matter 428, 1 (2013)

    Article  ADS  Google Scholar 

  10. J. Brum, G. Bastard, Superlattices Microstruct 4, 443 (1988)

    Article  ADS  Google Scholar 

  11. X.Z. Duan, G.X. Wang, Appl. Mechanic. Matter (Trans Tech Publ) 380, 4837–4840 (2013)

    Google Scholar 

  12. B.-P. Gou, X.-J. Kong, J. Appl. Phys. 98, 053710 (2005)

    Article  ADS  Google Scholar 

  13. S. Yu, K. Kim, M.A. Stroscio, G.J. Iafrate, A. Ballato, Phys. Rev. B 50, 1733 (1994)

    Article  ADS  Google Scholar 

  14. C. Bennett, K. Guven, B. Tanatar, Phys. Rev. B 57, 3994 (1998)

    Article  ADS  Google Scholar 

  15. N.Q. Bau, D.T. Long, Phys. Cond. Matter 532, 149 (2018)

    Article  ADS  Google Scholar 

  16. N.Q. Bau, D.T. Long, J. Sci. Adv. Mater. Dev. 1, 209 (2016)

    Google Scholar 

  17. N.Q. Bau, N.T.L. Quynh, C.T.V. Ba, L.T. Hung, J. Korean Phys. Soc. 77, 1224 (2020)

    Article  ADS  Google Scholar 

  18. L.T. Hung, N.T.L. Quynh, N.T.N. Anh, N.Q. Bau, J. Phys. Conf. Ser. 1932, 012009 (2021)

    Article  Google Scholar 

  19. Q.N.T. Lam, H.N. Thu, D.N. Ba, B.N. Quang, J. Phys. Conf. Ser. 1506, 01201 (2020)

    Google Scholar 

  20. N.Q. Bau, T.T. Dien, N.T.N. Anh, N.D. Nam, D.T. Long, Phys. Cond. Matter 644, 414220 (2022)

    Article  Google Scholar 

  21. V. Malevich, E. Epshtein, Sov. Phys. J. 19, 230 (1976)

    Article  Google Scholar 

  22. H.V. Phuc, L. Dinh, T.C. Phong, Proc. Natl. Conf. Theor. Phys. 36, 175–181 (2011)

    Google Scholar 

  23. N. Mori, H. Momose, C. Hamaguchi, Phys. Rev. B 45, 4536 (1992)

    Article  ADS  Google Scholar 

  24. N.C. Constantinou, B.K. Ridley, Phys. Rev. B 15, 10622 (1990)

    Article  ADS  Google Scholar 

  25. P. Vasilopoulos, M. Charbonneau, C. Van Vliet, Phys. Rev. B 35, 1334 (1987)

    Article  ADS  Google Scholar 

  26. T.C. Phong, N.Q. Bau, J. Korean Phys. Soc. 42, 647 (2003)

    Google Scholar 

  27. M.A. Stroscio, Phys. Rev. B 40, 6428 (1989)

    Article  ADS  Google Scholar 

  28. N.Q. Bau, D.T. Hang, D.T. Long, J. Korean Phys. Soc. 75, 1004 (2019)

    Article  ADS  Google Scholar 

  29. M. Masale, N. Constantinou, Phys. Rev. B 48, 11128 (1993)

    Article  ADS  Google Scholar 

  30. S.C. Lee, Y.B. Kang, D.C. Kim, J.Y. Ryu, N.L. Kang, S.D. Choi, Phys. Rev. B 55, 6719 (1997)

    Article  ADS  Google Scholar 

  31. X. Wang, X. Lei, Phys. Rev. B 49, 4780 (1994)

    Article  ADS  Google Scholar 

  32. P. Knipp, T. Reinecke, Phys. Rev. B 48, 5700 (1993)

    Article  ADS  Google Scholar 

  33. W. Jiang, J.-P. Leburton, J. Appl. Phys. 74, 1652 (1993)

    Article  ADS  Google Scholar 

  34. D. Barnes, R. Nicholas, F. Peeters, X. Wu, J. Devreese, J. Singleton, C. Langerak, J. Harris, C. Foxon, Phys. Rev. Lett. 66, 794 (1991)

    Article  ADS  Google Scholar 

  35. J.Y. Ryu, R. O’connell, Phys. Rev. B 48, 9126 (1993)

    Article  ADS  Google Scholar 

  36. T.C. Phong, L.T. Thu Phuong, H.V. Phuc, P.T. Vinh, J. Korean Phys. Soc. 62, 305 (2013)

    Article  ADS  Google Scholar 

  37. C.T.V. Ba, N.Q. Bau, N.T.L. Quynh, N.D. Nam, D.T. Long, J. Korean Phys. Soc. 81, 757 (2022)

    Article  ADS  Google Scholar 

  38. H. Van Ngoc, N.Q. Bau, D.M. Quang, T.H. Hung, Int. J. Mod. Phys. B 36, 2250009 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

Tang Thi Dien was funded by Vingroup JSC and supported by the Master, Ph.D. Scholarship Programe of Vingroup Innovation Foundation (VINIF), Institute of Big Data, code VINIF.2021.Ths.92.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cao Thi Vi Ba or Nguyen Quang Bau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dien, T.T., Ba, C.T.V., Bau, N.Q. et al. Calculation of parallel Peltier coefficient in rectangular quantum wires under the influence of confined optical phonons and electromagnetic waves using quantum kinetic equation. J. Korean Phys. Soc. 82, 1187–1195 (2023). https://doi.org/10.1007/s40042-023-00781-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00781-2

Keywords

Navigation