Skip to main content
Log in

Unusual stacking sequence of MoS2 and WS2 vertical heterostructures in one-pot chemical vapor deposition growth

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript


Chemically well-designed one-pot growth is an efficient strategy for producing complex chemical compounds. Although the methodology has been successfully modified and adopted for growing layered transition metal dichalcogenide (LTMD) heterostructures, the simultaneous synthesis of multiple LTMDs in a single reactor may lead to unexpected stacking sequences. Since WS2 (top)/MoS2 (bottom) is known as a conventional result, here, we report that its inverted form can also rarely occur in one-pot chemical vapor deposition growth. An optimized Ar-ion bombardment process on the heterostructured area and subsequent Raman signal probing verified the initial stacking sequence of heterostructures: this sequential procedure was used for structure identification in this study. Unlike the growth of conventional heterostructures, we found that growing MoS2 can cover inactive W precursor beads. H2 gas injection then triggers WS2 growth between the MoS2 layer and substrate, forming an inverted MoS2 (top)/WS2 (bottom) heterostructure. Although the reaction sequence is fixed, our results indicate that their stacking may lead to unintended consequences which should be closely monitored for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author.


  1. F. Xia et al., Nat. Photonics 8, 899 (2014)

    Article  ADS  Google Scholar 

  2. G.H. Han et al., Chem. Rev. 118, 6297 (2018)

    Article  Google Scholar 

  3. B. Radisavljevic et al., Nat. Nanotechnol. 6, 147 (2011)

    Article  ADS  Google Scholar 

  4. M.Y. Li, C.H. Chen, Y. Shi, L.J. Li, Mater. Today 19, 322 (2016)

    Article  Google Scholar 

  5. C.-H. Lee et al., Nat. Nanotechnol. 9, 676 (2014)

    Article  ADS  Google Scholar 

  6. Y. Liu et al., Nat. Rev. Mater. 1, 16042 (2016)

    Article  ADS  Google Scholar 

  7. W.J. Yu et al., Nat. Nanotechnol. 8, 952 (2013)

    Article  ADS  Google Scholar 

  8. H. Li, J. Wu et al., ACS Nano 8, 6563 (2014)

    Article  Google Scholar 

  9. A. Reina et al., J. Phys. Chem. C 112, 17741 (2008)

    Article  Google Scholar 

  10. K. Jin, D. Liu, Y. Tian, Nanotechnology 26, 405708 (2015)

    Article  Google Scholar 

  11. M.H. Chiu et al., ACS Nano 8, 9649 (2014)

    Article  Google Scholar 

  12. S. Huang et al., Nano Lett. 14, 5500 (2014)

    Article  ADS  Google Scholar 

  13. K. Wang et al., ACS Nano 10, 6612 (2016)

    Article  Google Scholar 

  14. A. Jain et al., Nanotechnology 29, 265203 (2018)

    Article  ADS  Google Scholar 

  15. C. Huang et al., Nat. Mater. 13, 1096 (2014)

    Article  Google Scholar 

  16. Y. Gong et al., Nano Lett. 15, 6135 (2015)

    Article  ADS  Google Scholar 

  17. K. Chen et al., ACS Nano 9, 9868 (2015)

    Article  Google Scholar 

  18. X. Duan et al., Nat. Nanotechnol. 9, 1024 (2014)

    Article  ADS  Google Scholar 

  19. M.-Y. Li et al., Science (1979) 349, 524 (2015)

    Google Scholar 

  20. P.K. Sahoo et al., Nature 553, 63 (2018)

    Article  ADS  Google Scholar 

  21. Y. Gong et al., Nat. Mater. 13, 1135 (2014)

    Article  ADS  Google Scholar 

  22. X. Zhang et al., Small 17, 2007312 (2021)

    Article  Google Scholar 

  23. X. Li et al., ACS Appl. Electron. Mater. 3, 5138 (2021)

    Article  Google Scholar 

  24. Q. Zhang et al., Angew. Chem. Int. Ed. 54, 8957 (2015)

    Article  Google Scholar 

  25. J. Zhu et al., J. Am. Chem. Soc. 142, 16276 (2020)

    Article  Google Scholar 

  26. H. Kim et al., Nanotechnology 28, 36LT01 (2017)

    Article  Google Scholar 

  27. N. Zeng et al., Chem. of Mater. 32, 7895 (2020)

    Article  Google Scholar 

  28. H. Li et al., Adv. Func. Mater. 22, 1385 (2012)

    Article  ADS  Google Scholar 

  29. X. Hong et al., Nature Nanotechnol. 9, 682 (2014)

    Article  ADS  Google Scholar 

  30. H. Chen et al., Nat. Commun. 7, 12512 (2016)

    Article  ADS  Google Scholar 

  31. K.F. Mak et al., Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

Download references


This work was supported by Incheon National University (International Cooperative) Research Grant in No. 2019-0295.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Gang Hee Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1444 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, G.H., Neumann, M., Song, S. et al. Unusual stacking sequence of MoS2 and WS2 vertical heterostructures in one-pot chemical vapor deposition growth. J. Korean Phys. Soc. 82, 57–67 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: