Skip to main content
Log in

Capping layers and their roles in polar catastrophe scenario of LaAlO3/SrTiO3 (001) systems

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Under the assumption that epitaxially strained growth is taking place under strained growth conditions, the metallic and insulating properties of LaAlO3 (LAO) films grown on TiO2-terminated SrTiO3 (STO) (001) substrates are theoretically investigated in this study. We studied the electronic properties LaAlO3/SrTiO3 films grown on the periodic superstructure of \(\surd 2\times \surd 2\) in-plane squares of STO substrate to accommodate the structural strain of heterogeneous film by allowing tilting of octahedra, as well as distortion. This enables us to study electronic and structural properties by allowing structural relaxation in a more realistic manner. This study examined spin-polarized Ti density functional calculations which promote metal–insulator transition toward thinner LAO/STO than in cases without spin polarization. Using the density of states at the Fermi level obtained from fully relaxed structures, the study shows that a capping layer of LaAlO3, Al2O3, and La2O3 on top of a stoichiometric AlO2 layer promotes toward-metallic transition, causing thin LAO films to undergo metallic transitions sooner than stoichiometric LAO films to do so.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Bell, S. Harashima, Y. Hikita, H.Y. Hwang, Appl. Phys. Lett. 94, 222111 (2009)

    Article  ADS  Google Scholar 

  2. J. Lee, A.A. Demkov, Phys. Rev. B 78, 193104 (2008)

    Article  ADS  Google Scholar 

  3. R. Pentcheva, W.E. Pickett, Phys. Rev. Lett. 102, 107602 (2009)

    Article  ADS  Google Scholar 

  4. M.L. Reinle-Schmitt, C. Cancellieri, D. Li, D. Fontaine, M. Medarde, E. Pomjakushina, C.W. Schneider, S. Gariglio, Ph. Ghosez, J.-M. Triscone, P.R. Willmott, Nat. Commun. 3, 932 (2012)

    Article  ADS  Google Scholar 

  5. S.A. Chambersa, M.H. Engelhard, V. Shutthanandan, Z. Zhu, T.C. Droubaya, L. Qiao, P.V. Sushko, T. Feng, H.D. Lee, T. Gustafsson, E. Garfunkel, A.B. Shah, J.-M. Zuo, Q.M. Ramasse, Surf. Sci. Rep. 65, 317 (2010)

    Article  ADS  Google Scholar 

  6. I. Fongkaew, S. Limpijumnong, W.R.L. Lambrecht, Phys. Rev. B 92, 155416 (2015)

    Article  ADS  Google Scholar 

  7. J. Lee, J.K. Choi, S.Y. Moon, J. Park, J.-S. Kim, C.S. Hwang, S.-H. Baek, J.-H. Choi, H.J. Chang, Appl. Phys. Lett. 106, 071601 (2015)

    Article  ADS  Google Scholar 

  8. A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J.C. Maan, W.G. van der Wiel, G. Rijnders, D.H. Blank, H. Hilgenkamp, Nat. Mater. 6, 493 (2007)

    Article  ADS  Google Scholar 

  9. L. Li, C. Richter, J. Mannhart, R.C. Ashoori, Nat. Phys. 7, 762 (2011)

    Article  Google Scholar 

  10. J.A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H.Y. Hwang, K.A. Moler, Nature Phys. 7, 767 (2011)

    Article  ADS  Google Scholar 

  11. A. Ariando, X. Wang, G. Baskaran, Z.Q. Liu, J. Huijben, J.B. Yi, A. Annadi, A.R. Barman, A. Rusydi, S. Dhar, Y.P. Peng, J. Ding, J.W.M. Hilgenkamp, T. Venkatesan, Nat. Commun. 2, 188 (2011)

    Article  ADS  Google Scholar 

  12. D.A. Dikin, M. Mehta, C.W. Bark, C.M. Folkman, C.B. Eom, V. Chandrasekhar, Phys. Rev. Lett. 107, 56802 (2011)

    Article  ADS  Google Scholar 

  13. S. Banerjee, O. Erten, M. Randeria, Nat. Phys. 25, 2702 (2013)

    Google Scholar 

  14. R.A.C. Amoresi, L. Cichetto Jr., A.F. Gouveia, Y.N. Colmenares, M.D. Teodoro, G.E. Marques, E. Longo, A.Z. Simões, J. Andrés, A.J. Chiquito, M.A. Zaghete, Mater. Today Commun. 24, 101339 (2020)

    Article  Google Scholar 

  15. K. Song, T. Min, J. Seo, S. Ryu, H. Lee, Z. Wang, S.-Y. Choi, J. Lee, C.-B. Eom, S.H. Oh, Adv. Sci. 8, 2002073 (2021)

    Article  Google Scholar 

  16. J. Jeon, K. Eom, Y. Hong, C.-B. Eom, K. Heo, H. Lee, ACS Appl Mater. Interfaces 13, 47208 (2021)

    Article  Google Scholar 

  17. J.H. Cho, H.J. Jeen, E. Cho, Thin Solid Films 651, 13 (2018)

    Article  ADS  Google Scholar 

  18. J.H. Cho, H.J. Jeen, J. Appl. Phys. 128, 045301 (2020)

    Article  ADS  Google Scholar 

  19. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  20. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  21. L. Bengtsson, Phys. Rev. B 59, 12301 (1999)

    Article  ADS  Google Scholar 

  22. A.M. Glazer, Phase Transit. 84, 405 (2011)

    Article  Google Scholar 

  23. The structural data were obtained from www.materialsproject.org.

  24. S.A. Pauli, S.J. Leake, B. Delley, M. Bjorck, C.W. Schneider, C.M. Schleputz, D. Martoccia, S. Paetel, J. Mannhart, P.R. Willmott, Phys. Rev. Lett. 106, 036101 (2011)

    Article  ADS  Google Scholar 

  25. C. Cancellieri, D. Fontaine, S. Gariglio, N. Reyren, A.D. Caviglia, A. Fete, S.J. Leake, S.A. Pauli, P.R. Willmott, M. Stengel, Ph. Ghosez, J.-M. Triscone, Phys. Rev. Lett. 107, 056102 (2011)

    Article  ADS  Google Scholar 

  26. S. Baroni, R. Resta, Phys. Rev. B 33, 7017 (1986)

    Article  ADS  Google Scholar 

  27. L. Yu, A. Zunger, Nat. Commun. 5, 5118 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a 2-Year Research Grant from Pusan National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhyung Cho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2933 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, J., Jeen, H. Capping layers and their roles in polar catastrophe scenario of LaAlO3/SrTiO3 (001) systems. J. Korean Phys. Soc. 81, 984–990 (2022). https://doi.org/10.1007/s40042-022-00645-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00645-1

Keywords

Navigation