Skip to main content
Log in

Evolution of electronic band reconstruction in thickness-controlled perovskite SrRuO\(_3\) thin films

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Transition metal perovskite oxides display a variety of emergent phenomena which are tunable by tailoring the oxygen octahedral rotation. SrRuO\(_3\), a ferromagnetic perovskite oxide, is well known to have various atomic structures and octahedral rotations when grown as thin films. However, how the electronic structure changes with the film thickness has been hardly studied. Here, using angle-resolved photoemission spectroscopy and electron diffraction techniques, we study the electronic structure of SrRuO\(_3\) thin films as a function of the film thickness. Different reconstructed electronic structures and spectral weights are observed for films with various thicknesses. We suggest that octahedral rotations on the surface can be qualitatively estimated via comparison of intensities of different bands. Our observation and methodology shed light on how structural variation and transition may be understood in terms of photoemission spectroscopy data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Tokura, N. Nagaosa, Science 288, 462 (2000)

    Article  ADS  Google Scholar 

  2. A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  3. N.A. Spaldin, R. Ramesh, Nat. Mater. 18, 203 (2019)

    Article  Google Scholar 

  4. C. Ahn, A. Cavalleri, A. Georges, S. Ismail-Beigi, A.J. Millis, J.-M. Triscone, Nat. Mater. 20, 1462 (2021)

    Article  ADS  Google Scholar 

  5. V.I. Anisimov, I.A. Nekrasov, D.E. Kondakov, T.M. Rice, M. Sigrist, Eur. Phys. J. B 25, 191 (2002)

    ADS  Google Scholar 

  6. B.J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H. Takagi, T.-H. Arima, Science 323, 1329 (2009)

    Article  ADS  Google Scholar 

  7. G. Koster, L. Klein, W. Siemons, G. Rijnders, J.S. Dodge, C.-B. Eom, D.H. Blank, M.R. Beasley, Rev. Mod. Phys. 84, 253 (2012)

    Article  ADS  Google Scholar 

  8. J.R. Kim, B. Sohn, H.J. Lee, S. Lee, E.K. Ko, S. Hahn, S. Lee, Y. Kim, D. Kim, H.J. Kim, et al., arXiv:2203.04244 [cond-mat.str-el]

  9. J.S. Ahn, J. Bak, H.S. Choi, T.W. Noh, J.E. Han, Y. Bang, J.H. Cho, Q.X. Jia, Phys. Rev. Lett. 82, 5321 (1999)

    Article  ADS  Google Scholar 

  10. C.-Q. Jin, J.-S. Zhou, J.B. Goodenough, Q.Q. Liu, J.G. Zhao, L.X. Yang, Y. Yu, R.C. Yu, T. Katsura, A. Shatskiy et al., PNAS 105, 7115 (2008)

    Article  ADS  Google Scholar 

  11. Z. Ali, Z. Wang, A. O’Hara, M. Saghayezhian, D. Shin, Y. Zhu, S.T. Pantelides, J. Zhang, Phys. Rev. B 105, 054429 (2022)

    Article  ADS  Google Scholar 

  12. A. Vailionis, W. Siemons, G. Koster, Appl. Phys. Lett. 93, 051909 (2008)

    Article  ADS  Google Scholar 

  13. W. Lu, W. Song, P. Yang, J. Ding, G.M. Chow, J. Chen, Sci. Rep. 5, 1 (2015)

    Google Scholar 

  14. P.V. Balachandran, J.M. Rondinelli, Phys. Rev. B 88, 054101 (2013)

    Article  ADS  Google Scholar 

  15. H.Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, Y. Tokura, Nat. Mater. 11, 103 (2012)

    Article  ADS  Google Scholar 

  16. P. Siwakoti, Z. Wang, M. Saghayezhian, D. Howe, Z. Ali, Y. Zhu, J. Zhang, Phys. Rev. Mater. 5, 114409 (2021)

    Article  Google Scholar 

  17. S.H. Chang, Y.J. Chang, S. Jang, D. Jeong, C. Jung, Y.-J. Kim, J.-S. Chung, T. Noh, Phys. Rev. B 84, 104101 (2011)

    Article  ADS  Google Scholar 

  18. C.J. Roh, J.R. Kim, S. Park, Y.J. Shin, B.-J. Yang, T.W. Noh, J.S. Lee, Appl. Surf. Sci. 553, 149574 (2021)

    Article  Google Scholar 

  19. B. Sohn, E. Lee, S.Y. Park, W. Kyung, J. Hwang, J.D. Denlinger, M. Kim, D. Kim, B. Kim, H. Ryu et al., Nat. Mater. 20, 1643 (2021)

    Article  ADS  Google Scholar 

  20. L. Wang, Q. Feng, H.G. Lee, E.K. Ko, Q. Lu, T.W. Noh, Nano Lett. 20, 2468 (2020)

    Article  ADS  Google Scholar 

  21. L. Rimai, G. DeMars, Phys. Rev. 127, 702 (1962)

    Article  ADS  Google Scholar 

  22. B. Sohn, B. Kim, S.Y. Park, H.Y. Choi, J.Y. Moon, T. Choi, Y.J. Choi, H. Zhou, J.W. Choi, A. Bombardi et al., Phys. Rev. Res. 3, 023232 (2021)

    Article  Google Scholar 

  23. Y. Chen, D.L. Bergman, A.A. Burkov, Phys. Rev. B 88, 125110 (2013)

    Article  ADS  Google Scholar 

  24. D.E. Shai, C. Adamo, D.W. Shen, C.M. Brooks, J.W. Harter, E.J. Monkman, B. Burganov, D.G. Schlom, K.M. Shen, Phys. Rev. Lett. 110, 087004 (2013)

    Article  ADS  Google Scholar 

  25. S. Hahn, B. Sohn, M. Kim, J.R. Kim, S. Huh, Y. Kim, W. Kyung, M. Kim, D. Kim, Y. Kim et al., Phys. Rev. Lett. 127, 256401 (2021)

    Article  ADS  Google Scholar 

  26. S. Moser, J. Electron Spectrosc. Relat. Phenom. 214, 29 (2017)

    Article  Google Scholar 

  27. B. Sohn, J.R. Kim, C.H. Kim, S. Lee, S. Hahn, Y. Kim, S. Huh, D. Kim, Y. Kim, W. Kyung et al., Nat. Commun. 12, 6171 (2021)

    Article  ADS  Google Scholar 

  28. M. Kim, J. Kwon, C.H. Kim, Y. Kim, D. Chung, H. Ryu, J. Jung, B.S. Kim, D. Song, J.D. Denlinger et al., NPJ Quantum Mater. 7, 1 (2022)

    Article  Google Scholar 

  29. E. Ko, B.J. Kim, C. Kim, H.J. Choi, Phys. Rev. Lett. 98, 226401 (2007)

    Article  ADS  Google Scholar 

  30. M.P. Seah, W.A. Dench, Surf. Interface Anal. 1, 2 (1979)

    Article  Google Scholar 

  31. I.I. Mazin, D.A. Papaconstantopoulos, D. Singh, Phys. Rev. B 61, 5223 (2000)

    Article  ADS  Google Scholar 

  32. J. Fowlie, C. Lichtensteiger, M. Gibert, H. Meley, P. Willmott, J.-M. Triscone, Nano Lett. 19, 4188 (2019)

    Article  ADS  Google Scholar 

  33. Z. Liao, M. Huijben, Z. Zhong, N. Gauquelin, S. Macke, R. Green, S. Van Aert, J. Verbeeck, G. Van Tendeloo, K. Held et al., Nat. Mater. 15, 425 (2016)

    Article  ADS  Google Scholar 

  34. H. Unoki, T. Sakudo, J. Phys. Soc. Jpn. 23, 546 (1967)

    Article  ADS  Google Scholar 

  35. K.A. Müller, W. Berlinger, F. Waldner, Phys. Rev. Lett. 21, 814 (1968)

    Article  ADS  Google Scholar 

  36. K. Tsuda, M. Tanaka, Acta Crystallogr. A: Found. Adv. 51, 7 (1995)

    Article  Google Scholar 

  37. R. Gao, Y. Dong, H. Xu, H. Zhou, Y. Yuan, V. Gopalan, C. Gao, D.D. Fong, Z. Chen, Z. Luo et al., ACS Appl. Mater. Interfaces. 8, 14871 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge insightful discussions with Younsik Kim. This work is supported by the Institute for Basic science in Korea (Grant No. IBS-R009-G2). CK acknowledges the supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2022R1A3B1077234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyoung Kim.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohn, B., Kim, C. Evolution of electronic band reconstruction in thickness-controlled perovskite SrRuO\(_3\) thin films. J. Korean Phys. Soc. 81, 1250–1256 (2022). https://doi.org/10.1007/s40042-022-00633-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00633-5

Keywords

Navigation