Skip to main content
Log in

Nonequilibrium critical dynamics of the ferromagnetic Ising chain subject to slow cooling: Kawasaki’s spin-exchange kinetics

  • Original Paper - General, Mathematical and Statistical Physics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We numerically investigate the nonequilibrium dynamics of the kinetic Ising chain under slow cooling to zero temperature, employing a spin-exchange kinetics that conserves the order parameter. We focus on a logarithmic cooling protocol with a tuning parameter. Applying the Kibble–Zurek mechanism to the considered cooling protocol, we derive the common expressions for the growing length and timescales with cooling, which holds for both the spin-flip and spin-exchange kinetics. The dynamic scaling behaviors of the excess defect density and spin correlation function indicate that the nonequilibrium dynamics is governed by the time and length scales that are in agreement with the predictions of the Kibble–Zurek mechanism. We find that the equal-time spatial spin correlation function at zero temperature exhibits a universal power law decay at long distance. At variance with an interesting possibility recently raised for the present system, no new length scale is found that is distinct from the Kibble–Zurek one. The measured correlation length exhibits an extraordinarily rapid growth process during the cooling down to zero temperature after the onset of nonequilibrium regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.J. Bray, Adv. Phys. 51, 481 (2002)

    Article  ADS  Google Scholar 

  2. G.F. Mazenko, Chapter 11 Unstable growth in nonequilibrium statistical mechanics (Wiley-VCH Verlag, Weinheim, 2006)

    Book  Google Scholar 

  3. P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977)

    Article  ADS  Google Scholar 

  4. T.W.B. Kibble, J. Phys. A 9, 1387 (1976)

    Article  ADS  Google Scholar 

  5. W.H. Zurek, Nature (London) 317, 505 (1985)

    Article  ADS  Google Scholar 

  6. J. Dziarmaga, Adv. Phys. 59, 1063 (2010)

    Article  ADS  Google Scholar 

  7. A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011)

    Article  ADS  Google Scholar 

  8. A. del Campo, W.H. Zurek, Int. J. Mod. Phys. A 29, 1430018 (2014)

    Article  Google Scholar 

  9. J. Dziarmaga, ACTA PHYSICA POLONICA B 35, 2205 (2004)

    ADS  Google Scholar 

  10. G. Biroli, L.F. Cugliandolo, A. Sicilia, Phys. Rev. E 81, 050101(R) (2010)

    Article  ADS  Google Scholar 

  11. A. Jelic, L.F. Cugliandolo, J. Stat. Mech. 02032 (2011)

  12. A. Chandran, A. Erez, S.S. Gubser, S.L. Sondhi, Phys. Rev. B 86, 064304 (2012)

    Article  ADS  Google Scholar 

  13. C. Liu, A. Polkovnikov, A.W. Sandvik, Phys. Rev. B 89, 054307 (2014)

    Article  ADS  Google Scholar 

  14. J. Hamp, A. Chandran, R. Moessner, C. Castelnovo, Phys. Rev. B 92, 075142 (2015)

    Article  ADS  Google Scholar 

  15. Y. Huang, S. Yin, Q. Hu, F. Zhong, Phys. Rev. B 93, 024103 (2016)

    Article  ADS  Google Scholar 

  16. B. Feng, S. Yin, F. Zhong, Phys. Rev. B 94, 144103 (2016)

    Article  ADS  Google Scholar 

  17. A. Pelissetto, E. Vicari, Phys. Rev. Lett. 118, 030602 (2017)

    Article  ADS  Google Scholar 

  18. H. Ricateau, L.F. Cugliandolo, M. Pico, J. Stat. Mech. 013201 (2018)

  19. N. Xu, C. Castelnovo, R.G. Melko, C. Chamon, A.W. Sandvik, Phys. Rev. B 97, 024432 (2018)

    Article  ADS  Google Scholar 

  20. K. Jeong, B. Kim, S.J. Lee, Phys. Rev. E 99, 022113 (2019)

    Article  ADS  Google Scholar 

  21. K. Jeong, B. Kim, S.J. Lee, New Phys. Sae Mulli 71, 200 (2021)

    Article  Google Scholar 

  22. W. Yuan, F. Zhong, J. Phys, Condens. Matter 33, 375401 (2021)

    Article  Google Scholar 

  23. K. Jeong, B. Kim, S.J. Lee, J. Korean Phys. Soc. (2022)

  24. S. Suzuki, J. Stat. Mech. P03032 (2009)

  25. P.L. Krapivsky, J. Stat. Mech. P02014 (2010)

  26. K. Jeong, B. Kim, S.J. Lee, Phys. Rev. E 102, 012114 (2020)

    Article  ADS  Google Scholar 

  27. Priyanka, S. Chatterjee, K. Jain, J. Stat. Mech. 033208 (2021)

  28. J.J. Mayo, Z. Fan, G.-W. Chern, A. del Campo, Phys. Rev. Res. 3, 033150 (2021)

    Article  Google Scholar 

  29. C. Godrèche, J. Luck. arXiv:2208.12512v1

  30. K. Kawasaki, Phys. Rev. 145, 224 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  31. R.J. Glauber, J. Math. Phys. 4, 294 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  32. S.J. Cornell, K. Kaski, R.B. Stinchcombe, Phys. Rev. B 44, 12263 (1991)

    Article  ADS  Google Scholar 

  33. S.J. Cornell, Part of the presentation in the present section follows an excellent review article on the one-dimensional kinetic Ising models, in Nonequilibrium statistical mechanics in one dimension. ed. by V. Privman (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  34. R. Cordery, S. Sarkar, J. Tobochnik, Phys. Rev. B 24, 5402 (1981)

    Article  ADS  Google Scholar 

  35. W. Zwerger, Phys. Lett. 84A, 269 (1981)

    Article  ADS  Google Scholar 

  36. A.J. Bray, J. Phys. A: Math. Gen. 22, L67 (1989)

    Article  Google Scholar 

  37. J.G. Amar, F. Family, Phys. Rev. A 41, 3258 (1990)

    Article  ADS  Google Scholar 

  38. H. Reiss, Chem. Phys. 47, 16 (1980)

    Article  MathSciNet  Google Scholar 

  39. R. Schilling, J. Stat. Phys. 53, 1227 (1988)

    Article  ADS  Google Scholar 

  40. J.J. Brey, A. Prados, Phys. Rev. B 49, 984 (1994)

    Article  ADS  Google Scholar 

  41. J. Jäckle, R.B. Stinchcombe, S.J. Cornell, J. Stat. Phys. 62, 425 (1991)

    Article  ADS  Google Scholar 

  42. S.J. Cornell, K. Kaski, R.B. Stinchcombe, J. Phys. A: Math. Gen. 34, L865 (1991)

    Article  Google Scholar 

  43. K. Huang, Statistical mechanics (Wiley, New York, 1963)

    Google Scholar 

  44. S.N. Majumdar, D.A. Huse, B.D. Lubachevsky, Phys. Rev. Lett. 73, 182 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge that the present work is supported by a Changwon National University grant (2021-2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bongsoo Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Jeong, K., Kim, B. et al. Nonequilibrium critical dynamics of the ferromagnetic Ising chain subject to slow cooling: Kawasaki’s spin-exchange kinetics. J. Korean Phys. Soc. 81, 722–732 (2022). https://doi.org/10.1007/s40042-022-00614-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00614-8

Keywords

Navigation