Skip to main content
Log in

Study of a large-area graphene transistor on a CaF2 substrate using a full-coverage polymer film as an additional dielectric

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We report the electrical transport properties of a dual-gate graphene device placed on a CaF2 substrate. A hexagonal boron nitride top-gate dielectric was introduced to confirm the electrical characteristics of the CaF2/graphene transistor because it is difficult to inject sufficient carriers through the CaF2 substrate owing to its thickness of 500 µm, and the typical ambipolar behavior of graphene with a slight n-doping effect was clearly observed. In addition, we used a polymethyl methacrylate (PMMA) film as a top-gate dielectric for large-scale graphene devices grown via chemical vapor deposition, which was transferred onto a CaF2 substrate. We controlled the high gate leakage current caused by the breakdown of the polymer due to non-uniformity by applying the film-transfer process rather than the direct coating method on the graphene device. Furthermore, the transport properties of large-area graphene in contact with CaF2 are discussed with respect to the effect of top-contacted PMMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.W. Stout, S.A. Reed, J. Am. Chem. Soc. 76(21), 5279 (1954)

    Article  Google Scholar 

  2. D.F. Bezuidenhout, in Handbook of Optical Constants of Solids. ed. by E.D. Palik (Academic Press, Burlington, 1997)

    Google Scholar 

  3. A. Koma, K. Saiki, Y. Sato, Appl. Surf. Sci. 41, 451 (1990)

    Article  ADS  Google Scholar 

  4. T.G. Mayerhöfer, S. Pahlow, U. Hübner, J. Popp, Anal. Chem. 92(13), 9024 (2020)

    Article  Google Scholar 

  5. D. Jiang et al., CrystEngComm 17(38), 7398 (2015)

    Article  Google Scholar 

  6. H.H. Li, J. Phys. Chem. Ref. Data 9(1), 161 (1980)

    Article  ADS  Google Scholar 

  7. J. Wang, J. Song, X. Mu, M. Sun, Mater. Today Phys. 13, 100196 (2020)

    Article  Google Scholar 

  8. W. Miao, L. Wang, X. Mu, J. Wang, J. Mater. Chem. C 9, 13600 (2021)

    Article  Google Scholar 

  9. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Nano Lett. 10, 751 (2010)

    Article  ADS  Google Scholar 

  10. C.H. Park, F. Giustino, M.L. Cohen, S.G. Louie, Nano Lett. 8, 4229 (2009)

    Article  ADS  Google Scholar 

  11. K.S. Novoselov et al., Nat. Phys. 2, 177 (2006)

    Article  Google Scholar 

  12. P.E. Allain, J.N. Fuchs, Eur. Phys. J. B 83, 301 (2011)

    Article  ADS  Google Scholar 

  13. F. Miao et al., Science 317, 1530 (2007)

    Article  ADS  Google Scholar 

  14. C. Berger et al., Science 312, 1191 (2006)

    Article  ADS  Google Scholar 

  15. J. Wang, F. Ma, W. Liang, M. Sun, Mater. Today Phys. 2, 6 (2017)

    Article  Google Scholar 

  16. M.J. Alam, D.C. Cameron, Surf. Coat. Technol. 142, 776 (2001)

    Article  Google Scholar 

  17. M.J. Alam, D.C. Cameron, Thin Solid Films 377, 455 (2000)

    Article  ADS  Google Scholar 

  18. F. Xia et al., Nat. Nanotechnol. 4, 839 (2009)

    Article  ADS  Google Scholar 

  19. T. Mueller, F. Xia, P. Avouris, Nat. Photon. 4, 297 (2010)

    Article  Google Scholar 

  20. U. Kim et al., Nanotechnology 24(14), 145501 (2013)

    Article  ADS  Google Scholar 

  21. J.W. Shin et al., 2D Mater. 5(1), 014003 (2018)

    Article  Google Scholar 

  22. Z. Yin et al., Adv. Energy Mater. 4, 1300574 (2014)

    Article  Google Scholar 

  23. X. Miao et al., Nano Lett. 12(6), 2745 (2012)

    Article  ADS  Google Scholar 

  24. C. Wen et al., Adv. Mater 32(34), 2002525 (2020)

    Article  Google Scholar 

  25. Y.Y. Illarionov et al., Nat. Electron. 2(6), 230 (2019)

    Article  Google Scholar 

  26. T.K. Chau, D. Suh, J. Korean Phys. Soc. 77, 879 (2020)

    Article  ADS  Google Scholar 

  27. A. Sanne et al., Appl. Phys. Lett. 104, 083106 (2014)

    Article  ADS  Google Scholar 

  28. M. Estrada et al., Solid-State Electron. 52, 53 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF-2021R1A2C2013289, NRF-2020R1I1A1A01074120) and by a Basic Science Institute (National Research Facilities and Equipment Center) grant (No. 2021R1A6C101A429) funded by the Ministry of Education. This study was also supported by the 2021 BK21 FOUR Program of the Pusan National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haeyong Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, Y., Oh, J., Yi, Y. et al. Study of a large-area graphene transistor on a CaF2 substrate using a full-coverage polymer film as an additional dielectric. J. Korean Phys. Soc. 81, 942–947 (2022). https://doi.org/10.1007/s40042-022-00610-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00610-y

Keywords

Navigation