Skip to main content
Log in

Measurement of the correlation length on Ising model

  • Original Paper - General, Mathematical and Statistical Physics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We present a method for measuring the correlation length of the Ising model. Starting from a ground state, we consider a quantity \(K(t,T) \equiv L ({\langle M^{2}(t) \rangle / \langle M(t) \rangle ^{2}-1})^{1/d}\), where M(t), L and d denote the magnetization, the system size, and substrate dimension of the model, respectively. K(tT) follows a power-law behavior \(K(t,T_{c}) \sim t^{1/z}\) at the critical temperature \(T_{c}\) and the saturation value of \(K(\infty , T)\) shows that \(K_{\mathrm{sat}} (T) \sim |T_{c} - T|^{-\nu }\). The critical exponents \(\nu = 1.00(1)\) and \(z=2.15(1)\) are estimated in a two dimensional square lattice. By calculating solely K(tT), we could obtain the correlation-length exponent directly. Also, the correlation length and critical exponents of the three dimensional Ising model on a cubic lattice are discussed. We believe that this is an effective method, which can be feasibly applied to various spin models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Ising, Z. Phys. 31, 253 (1925)

    Article  ADS  Google Scholar 

  2. J.P. Sethna, Statistical mechanics: entropy, order parameters, and complexity (University Press, Oxford, 2006)

    MATH  Google Scholar 

  3. M.L. Creutz, L. Jacobs, V. Rebbi, Phys. Rev. Lett. 42, 1390 (1979)

    Article  ADS  Google Scholar 

  4. L. Onsager, Phys. Rev. 65, 117 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  5. H.W.J. Blöte, J. Huiskamp, Phys. Lett. A 29, 304 (1969)

    Article  ADS  Google Scholar 

  6. G. Bhanot, M. Creutz, J. Lacki, Phys. Rev. Lett. 69, 1841 (1992)

    Article  ADS  Google Scholar 

  7. F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001)

    Article  ADS  Google Scholar 

  8. J. Cardy, Scaling and renormalization in statistical physics (Cambridge University Press, Cambridge, 1996)

    Book  Google Scholar 

  9. D.P. Landau, K. Binder, A guide to Monte Carlo simulation in statistical physics, 4th edn. (Cambridge University Press, Cambridge, 2014)

    Book  Google Scholar 

  10. K. Binder, E. Luijten, Phys. Rep. 344, 179 (2001). (and reference therein)

    Article  ADS  Google Scholar 

  11. M.E. Fisher, in Critical phenomena. ed. by M.S. Green (Academic Press, New York, 1971), pp.1–98

  12. B. McCoy, T.T. Wu, The two-dimensional Ising model (Harward University Press, 1973)

    Book  Google Scholar 

  13. C. Domb, The critical point (Taylor and Francis, London, 1996)

    Book  Google Scholar 

  14. J. Cardy, Finite-size scaling, vol. 1 (North-Holland, Amsterdam, 1988). (and references therein)

    Google Scholar 

  15. S.-Y. Kim, W. Kwak, J. Korean Phys. Soc. 72, 653 (2018)

    Article  ADS  Google Scholar 

  16. J.M. Kim, J. Stat. Mech. 21, 033213 (2021)

    Article  Google Scholar 

  17. P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987)

    Article  ADS  Google Scholar 

  18. P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. A 38, 364 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  19. J.M. Kim, J.M. Kosterlitz, Phys. Rev. Lett. 62, 2289 (1989)

    Article  ADS  Google Scholar 

  20. S.-W. Kim, J.M. Kim, J. Stat. Mech., 07005 (2014)

  21. S.B. Lee, J.M. Kim, Phys. Rev. E 80, 021101 (2009)

    Article  ADS  Google Scholar 

  22. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  23. M.P. Nightingale, H.W. Blöte, Phys. Rev. Lett. 76, 4548 (1996)

    Article  ADS  Google Scholar 

  24. R. Gupta, P. Tamayo, Int. J. Mod. Phys. C 7, 305 (1996)

    Article  ADS  Google Scholar 

  25. T. Preis, P. Virnau, W. Paul, J.J. Schneider, J. Comput. Phys. 228, 4468 (2009)

    Article  ADS  Google Scholar 

  26. C. Duclut, B. Delamotte, Phys. Rev. E 95, 012107 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. A.M. Ferrenberg, J. Xu, D.P. Landau, Phys. Rev. E 97, 043301 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. J. Kim for numerical assistances. This research was supported by a grant from the National Research Foundation of Korea (NRF-2020R1A2C1003971) and by the Basic Science Research Program funded by the Ministry of Education (NRF-2021R1A6A1A03043957).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Min Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.M. Measurement of the correlation length on Ising model. J. Korean Phys. Soc. 81, 602–607 (2022). https://doi.org/10.1007/s40042-022-00607-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00607-7

Keywords

Navigation